Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol Neurosurg Psychiatry ; 94(11): 938-944, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37295946

ABSTRACT

OBJECTIVE: Gait disturbance lowers activities of daily living in patients with Parkinson's disease (PD) and related disorders. However, the effectiveness of pharmacological, surgical and rehabilitative treatments is limited. We recently developed a novel neuromodulation approach using gait-combined closed-loop transcranial electrical stimulation (tES) for healthy volunteers and patients who are post-stroke, and achieved significant entrainment of gait rhythm and an increase in gait speed. Here, we tested the efficacy of this intervention in patients with Parkinsonian gait disturbances. METHODS: Twenty-three patients were randomly assigned to a real intervention group using gait-combined closed-loop oscillatory tES over the cerebellum at the frequency of individualised comfortable gait rhythm, and to a sham control group. RESULTS: Ten intervention sessions were completed for all patients and showed that the gait speed (F (1, 21)=13.0, p=0.002) and stride length (F (1, 21)=8.9, p=0.007) were significantly increased after tES, but not after sham stimulation. Moreover, gait symmetry measured by swing phase time (F (1, 21)=11.9, p=0.002) and subjective feelings about freezing (F (1, 21)=14.9, p=0.001) were significantly improved during gait. CONCLUSIONS: These findings showed that gait-combined closed-loop tES over the cerebellum improved Parkinsonian gait disturbances, possibly through the modulation of brain networks generating gait rhythms. This new non-pharmacological and non-invasive intervention could be a breakthrough in restoring gait function in patients with PD and related disorders.

2.
Front Hum Neurosci ; 16: 870733, 2022.
Article in English | MEDLINE | ID: mdl-36211132

ABSTRACT

Aphasia is a language disorder that occurs after a stroke and impairs listening, speaking, reading, writing, and calculation skills. Patients with post-stroke aphasia in Japan are increasing due to population aging and the advancement of medical treatment. Opportunities for adequate speech therapy in chronic stroke are limited due to time constraints. Recent studies have reported that intensive speech therapy for a short period of time or continuous speech therapy using high-tech equipment, including speech applications (apps, can improve aphasia even in the chronic stage. However, its underlying mechanism for improving language function and its effect on other cognitive functions remains unclear. In the present study, we investigated whether intensive speech therapy using a newly developed speech support app could improve aphasia and other cognitive functions in patients with chronic stroke. Furthermore, we examined whether it can alter the brain network related to language and other cortical areas. Thus, we conducted a prospective, single-comparison study to examine the effects of a new speech support app on language and cognitive functions and used resting state functional MRI (rs-fMRI) regions of interest (ROI) to ROI analysis to determine changes in the related brain network. Two patients with chronic stroke participated in this study. They used the independent speech therapy system to perform eight sets of 20 randomly presented words/time (taking approximately 20 min), for 8 consecutive weeks. Their language, higher cognitive functions including attention function, and rs-fMRI, were evaluated before and after the rehabilitation intervention using the speech support app. Both patients had improved pronunciation, daily conversational situations, and attention. The rs-fMRI analysis showed increased functional connectivity of brain regions associated with language and attention related areas. Our results show that intensive speech therapy using this speech support app can improve language and attention functions even in the chronic stage of stroke, and may be a useful tool for patients with aphasia. In the future, we will conduct longitudinal studies with larger numbers of patients, which we hope will continue the trends seen in the current study, and provide even stronger evidence for the usefulness of this new speech support app.

3.
Neuroimage Clin ; 33: 102938, 2022.
Article in English | MEDLINE | ID: mdl-34998126

ABSTRACT

BACKGROUND: R2* relaxometry analysis combined with quantitative susceptibility mapping (QSM), which has high sensitivity to iron deposition, can distinguish microstructural changes of the white matter (WM) and iron deposition, thereby providing a sensitive and biologically specific measure of the WM owing to the changes in myelin and its surrounding environment. This study aimed to explore the microstructural WM alterations associated with cognitive impairment in patients with Parkinson's disease (PD) using R2* relaxometry analysis combined with QSM. MATERIALS AND METHODS: We enrolled 24 patients with PD and mild cognitive impairment (PD-MCI), 22 patients with PD and normal cognition (PD-CN), and 19 age- and sex-matched healthy controls (HC). All participants underwent Montreal Cognitive Assessment (MoCA) and brain magnetic resonance imaging, including structural three-dimensional T1-weighted images and multiple spoiled gradient echo sequence (mGRE). The R2* and susceptibility maps were estimated from the multiple magnitude images of mGRE. The susceptibility maps were used for verifying iron deposition in the WM. The voxel-based R2* of the entire WM and its correlation with cognitive performance were analyzed. RESULTS: In the voxel-based group comparisons, the R2* in the PD-MCI group was lower in some WM regions, including the corpus callosum, than R2* in the PD-CN and HC groups. The mean susceptibility values in almost all brain regions were negative and close-to-zero values, indicating no detectable paramagnetic iron deposition in the WM of all subjects. There was a significant positive correlation between R2* and MoCA in some regions of the WM, mainly the corpus callosum and left hemisphere. CONCLUSION: R2* relaxometry analysis for WM microstructural changes provided further biologic insights on demyelination and changes in the surrounding environment, supported by the QSM results demonstrating no iron existence. This analysis highlighted the potential for the early evaluation of cognitive decline in patients with PD.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , White Matter , Brain/diagnostic imaging , Brain/pathology , Brain Mapping/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , White Matter/diagnostic imaging , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...