Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 134(1): 70-76, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35450786

ABSTRACT

A variety of methods have been reported using polymerase chain reaction (PCR)-based nucleic acid testing (NAT) because of its potential to be used in highly sensitive inspection systems. Among these NATs, fusion-PCR (also called as overlap-extension-PCR) has been focused on this study and adopted to generate the fused amplicon composed of plural marker gene fragments for detection. Generally, conventional agarose gel electrophoresis followed by gel staining is employed to check the PCR results. However, these are time-consuming processes that use specific equipment. To overcome these disadvantages, the immunochromatographic test (ICT) for the detection of PCR amplicons with hapten-labels that were generated by PCR using hapten-labeled primers was also adopted in this study. Based on these concepts, we constructed the systems of hapten-labeled fusion-PCR (HL-FuPCR) followed by ICT (HL-FuPCR-ICT) for the two and three marker genes derived from pathogenic microbe. As a result, we successfully developed a two marker genes system for the pathogenic influenza A virus and a three marker genes system for the penicillin-resistant Streptococcus pneumoniae. These detection systems of HL-FuPCR-ICT are characterized by simple handling and rapid detection within few minutes, and also showed the results as clear lines. Thus, the HL-FuPCR-ICT system introduced in this study has potential for use as a user-friendly inspection tool with the advantages especially in the detection of specific strains or groups expressing the characteristic phenotype(s) such as antibiotic resistance and/or high pathogenicity even in the same species.


Subject(s)
Haptens , Immunologic Tests , DNA Primers , Polymerase Chain Reaction/methods , Sensitivity and Specificity
2.
Bioorg Med Chem Lett ; 64: 128676, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35301139

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) antagonists are drug candidates for the treatment of type 2 diabetes, obesity, and osteoporosis. Previously, we have designed and synthesized a series of substituted phenylalkynyl amide-type PPARγ antagonists. The representative compound, MMT-160, exhibited nanomolar-order PPARγ antagonistic activity. To understand the antagonistic mode of action of MMT-160, mass spectrometric and X-ray crystallographic analysis of MMT-160 in the presence of the PPARγ ligand binding domain (LBD) were performed. The mass spectrometry results clearly indicated that alkynyl amide-type PPARγ antagonists were covalently bound to the PPARγ LBD. The X-ray crystallographic analysis indicated that MMT-160 acted as a Michael acceptor and covalently bound to the PPARγ LBD via Cys285. In addition, MMT-160 bound to the PPARγ LBD with a binding mode that was different from the binding modes observed for PPARγ agonists and partial agonists.


Subject(s)
Diabetes Mellitus, Type 2 , PPAR gamma , Amides/chemistry , Amides/pharmacology , Humans , Ligands , PPAR gamma/metabolism , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...