Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 70(2): 130-137, 2022.
Article in English | MEDLINE | ID: mdl-35110433

ABSTRACT

The free electrons inside precious metals such as Au vibrate when the surface of the metal is irradiated with an electromagnetic wave of an appropriate frequency. This oscillation is referred to as surface plasmon resonance (SPR), and the resonance frequency varies with permittivity of the medium around the metal. SPR sensors are widely applied in the fields of bioscience and pharmaceutical sciences, including biosensing for drug discovery, biomarker screening, virus detection, and testing for food safety. Here, we fabricated a metal-insulator-metal (MIM) SPR sensor by constructing two-dimensional (2D) regular array of Au colloidal particles (2D colloidal crystals) on an insulator layer over a thin Au film coated on a glass substrate surface. The 2D crystals were fabricated by electrostatically adsorbing negatively charged three-dimensional crystals onto a positively charged thin insulator formed on Au film. The plasmon peaks/dips from the MIM structure were measured in aqueous solutions of ethylene glycol (EG) at various concentrations. Multiple plasmon peaks/dips were observed due to the localized SPR (LSPR) of the Au particles and the Fano resonance between the Au particles and thin film. The plasmon peaks/dips shifted to higher wavelengths on increasing EG concentrations due to an increase in the refractive index of the media. The observed peak/dip shift was approximately twice that of LSPR from an isolated Au particle. We expect the present MIM substrate will be useful as a highly sensitive sensor in the pharmaceutical field.


Subject(s)
Gold Colloid/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance , Crystallization , Ethylene Glycol/chemistry , Particle Size , Solutions
2.
Langmuir ; 35(28): 9194-9201, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31274319

ABSTRACT

We demonstrate that nonclose-packed two-dimensional (2D) colloidal crystals fixed on flat solid surfaces can be obtained by the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. 3D colloidal crystals of negatively charged polystyrene (diameter d = 500 nm) and silica (d = 510 and 550 nm) particles were formed in their aqueous dispersions. Then, a single layer of the 3D crystals (the particle volume fraction = ∼0.07-0.3) was adsorbed onto a glass surface, which was earlier modified with 3-aminopropyltriethoxysilane (APTES), a cationic silane coupling reagent. Under salt-free conditions, the lowermost layer of the 3D crystals, which was oriented parallel to the substrate, was adsorbed onto the substrate surface, forming 2D crystals. Centimeter-sized, large 2D silica crystals were produced by combining a unidirectional 3D crystallization of the silica colloid under a base concentration gradient and a unidirectional adsorption under an acidic concentration gradient, which allowed tuning of the charge number on the APTES-modified substrate. The interparticle separations of the resulted 2D crystals did not vary greatly (within 5%) over a large area (length: 2 cm); however, the separations were smaller than the initial value because of gravitational sedimentation. We also produced 2D crystals of gold particles (d = 250 nm), which we expect to be applicable as plasmonic materials. The present study will provide a facile strategy to produce nonclose-packed 2D colloidal crystals of various types of particles, including large and high-density particles.

3.
Sci Rep ; 7(1): 6099, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733639

ABSTRACT

Particle adhesion onto hydrogels has recently attracted considerable attention because of the potential biomedical applications of the resultant materials. A variety of interactions have been taken advantage of for adsorption, including electrostatic forces, hydrophobic interactions and hydrogen bonding. In this study, we report significant adsorption of submicron-sized silica particles onto hydrogel surfaces in water, purely by van der Waals (vdW) attraction. The vdW forces enabled strong adhesions between dielectric materials in air. However, because the Hamaker constant decreases in water typically by a factor of approximately 1/100, it is not clear whether vdW attraction is the major driving force in aqueous settings. We investigated the adsorption of silica particles (diameter = 25-600 nm) on poly(acrylamide) and poly(dimethylacrylamide) gels using optical microscopy, under conditions where chemical and electrostatic adsorption is negligible. The quantity of adsorbed particles decreased on decreasing the Hamaker constant by varying the refractive indices of the particles and medium (ethyleneglycol/water), indicating that the adsorption is because of the vdW forces. The adsorption isotherm was discussed based on the adhesive contact model in consideration of the deformation of the gel surface. The present findings will advance the elucidation and development of adsorption in various types of soft materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...