Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 4525, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872786

ABSTRACT

Plant cell wall degrading enzymes (PCWDEs) are the primary virulence determinants of soft rotting bacteria such as the potato pathogen, Pectobacterium atrosepticum. The regulation of secondary metabolite (Rsm) system controls production of PCWDEs in response to changing nutrient conditions. This work identified a new suppressor of an rsmB mutation - ECA1172 or rsmS (rsmB suppressor). Mutants defective in rsmB (encoding a small regulatory RNA), show reduced elaboration of the quorum sensing molecule (N-3-oxohexanoyl-homoserine lactone; OHHL) and PCWDEs. However, OHHL and PCWDE production were partially restored in an rsmB, rsmS double mutant. Single rsmS mutants, overproduced PCWDEs and OHHL relative to wild type P. atrosepticum and exhibited hypervirulence in potato. RsmS overproduction also resulted in increased PCWDEs and OHHL. Homology searches revealed rsmS conservation across pathogens such as Escherichia coli (ybaM), Dickeya solani, Klebsiella pneumoniae and Shigella flexneri. An rsmS mutant of Pectobacterium carotovorum ATCC39048 showed bypass of rsmB-dependent repression of PCWDEs and OHHL production. P. carotovorum ATCC39048 produces the ß-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid (a carbapenem). Production of the antibiotic was repressed in an rsmB mutant but partially restored in an rsmB, rsmS double mutant. This work highlights the importance of RsmS, as a conserved pleiotropic regulator of virulence and antibiotic biosynthesis.


Subject(s)
Bacterial Proteins/metabolism , Pectobacterium/pathogenicity , Virulence/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbapenems/metabolism , Gene Expression Regulation, Bacterial , Mutation , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Sequence Alignment , Solanum tuberosum/microbiology
2.
Mol Biol Evol ; 35(3): 575-581, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29211859

ABSTRACT

Bacterial transformation can insert or delete genomic islands (GIs), depending on the donor and recipient genotypes, if an homologous recombination spans the GI's integration site and includes sufficiently long flanking homologous arms. Combining mathematical models of recombination with experiments using pneumococci found GI insertion rates declined geometrically with the GI's size. The decrease in acquisition frequency with length (1.08×10-3 bp-1) was higher than a previous estimate of the analogous rate at which core genome recombinations terminated. Although most efficient for shorter GIs, transformation-mediated deletion frequencies did not vary consistently with GI length, with removal of 10-kb GIs ∼50% as efficient as acquisition of base substitutions. Fragments of 2 kb, typical of transformation event sizes, could drive all these deletions independent of island length. The strong asymmetry of transformation, and its capacity to efficiently remove GIs, suggests nonmobile accessory loci will decline in frequency without preservation by selection.

4.
Mol Biochem Parasitol ; 169(1): 20-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19766148

ABSTRACT

Calpains are a ubiquitous family of calcium-dependent cysteine proteases involved in a wide range of cell regulatory and differentiation processes. In many protozoan organisms, atypical calpains have been discovered that lack the characteristic calcium-binding penta-EF-hand motif of typical vertebrate calpains and most of these novel calpain-like proteins are non-enzymatic homologues of typical calpains. The gene family is particularly expanded in ciliates and kinetoplastids, comprising 25 members in the parasite Trypanosoma brucei. Unique to kinetoplastids, some calpain-like proteins contain N-terminal dual myristoylation/palmitoylation signals, a protein modification involved in protein-membrane associations. We analyzed the expression of calpain-like proteins in the insect (procyclic) and bloodstream-stage of T. brucei using quantitative real time PCR and identified the differential expression of some of the calpain genes. We also present a comprehensive analysis of the subcellular localisation of selected members of this protein family in trypanosomes. Here, of particular interest is the role of protein acylation for targeting to the flagellum. We show that, although acylation is important for flagellar targeting, additional signals are required to specify the precise subcellular localisation.


Subject(s)
Calpain/genetics , Calpain/metabolism , Gene Expression Regulation, Enzymologic , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/enzymology , Calpain/chemistry , Gene Expression , Molecular Sequence Data , Multigene Family , Protein Structure, Tertiary , Protein Transport , Protozoan Proteins/chemistry , Trypanosoma brucei brucei/chemistry , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...