Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 10(1): 50-55, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655946

ABSTRACT

The further optimization of ER-α degradation efficacy of a series of ER modulators by refining side-chain substitution led to efficacious selective estrogen receptor degraders (SERDs). A fluoromethyl azetidine group was found to be preferred and resulted in the identification of bis-phenol chromene 17ha. In a tamoxifen-resistant breast cancer xenograft model, 17ha (ER-α degradation efficacy = 97%) demonstrated tumor regression, together with robust reduction of intratumoral ER-α levels. However, despite superior oral exposure, 5a (ER-α degradation efficacy = 91%) had inferior activity. This result suggests that optimizing ER-α degradation efficacy leads to compounds with robust effects in a model of tamoxifen-resistant breast cancer. Compound 17ha (GDC-0927) was evaluated in clinical trials in women with metastatic estrogen receptor-positive breast cancer.

3.
Bioorg Med Chem Lett ; 29(3): 367-372, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30587451
4.
J Med Chem ; 61(17): 7917-7928, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30086626

ABSTRACT

About 75% of breast cancers are estrogen receptor alpha (ER-α) positive, and women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, but resistance often emerges. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and shows some activity in patients who have progressed on antihormonal agents. However, fulvestrant must be administered by intramuscular injections that limit its efficacy. We describe the optimization of ER-α degradation efficacy of a chromene series of ER modulators resulting in highly potent and efficacious SERDs such as 14n. When examined in a xenograft model of tamoxifen-resistant breast cancer, 14n (ER-α degradation efficacy = 91%) demonstrated robust activity, while, despite superior oral exposure, 15g (ER-α degradation efficacy = 82%) was essentially inactive. This result suggests that optimizing ER-α degradation efficacy in the MCF-7 cell line leads to compounds with robust effects in models of tamoxifen-resistant breast cancer derived from an MCF-7 background.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzopyrans/chemistry , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Estrogen Receptor alpha/metabolism , Selective Estrogen Receptor Modulators/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Mice , Rats , Selective Estrogen Receptor Modulators/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Elife ; 52016 07 13.
Article in English | MEDLINE | ID: mdl-27410477

ABSTRACT

ER-targeted therapeutics provide valuable treatment options for patients with ER+ breast cancer, however, current relapse and mortality rates emphasize the need for improved therapeutic strategies. The recent discovery of prevalent ESR1 mutations in relapsed tumors underscores a sustained reliance of advanced tumors on ERα signaling, and provides a strong rationale for continued targeting of ERα. Here we describe GDC-0810, a novel, non-steroidal, orally bioavailable selective ER downregulator (SERD), which was identified by prospectively optimizing ERα degradation, antagonism and pharmacokinetic properties. GDC-0810 induces a distinct ERα conformation, relative to that induced by currently approved therapeutics, suggesting a unique mechanism of action. GDC-0810 has robust in vitro and in vivo activity against a variety of human breast cancer cell lines and patient derived xenografts, including a tamoxifen-resistant model and those that harbor ERα mutations. GDC-0810 is currently being evaluated in Phase II clinical studies in women with ER+ breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Cinnamates/administration & dosage , Indazoles/administration & dosage , Receptors, Estrogen/administration & dosage , Animals , Cell Line, Tumor , Disease Models, Animal , Heterografts , Humans , Mice , Prospective Studies , Rats , Treatment Outcome
6.
Bioorg Med Chem Lett ; 25(22): 5163-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26463130

ABSTRACT

Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Receptor Antagonists/therapeutic use , Indazoles/therapeutic use , Tamoxifen/therapeutic use , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cinnamates/therapeutic use , Drug Resistance, Neoplasm , Estrogen Receptor Antagonists/metabolism , Female , Indazoles/chemistry , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
J Med Chem ; 58(12): 4888-904, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-25879485

ABSTRACT

Approximately 80% of breast cancers are estrogen receptor alpha (ER-α) positive, and although women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, resistance often emerges. Although a variety of resistance mechanism may be at play in this state, there is evidence that in many cases the ER still plays a central role, including mutations in the ER leading to constitutively active receptor. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and is active in patients who have progressed on antihormonal agents. However, fulvestrant suffers from poor pharmaceutical properties and must be administered by intramuscular injections that limit the total amount of drug that can be administered and hence lead to the potential for incomplete receptor blockade. We describe the identification and characterization of a series of small-molecule, orally bioavailable SERDs which are potent antagonists and degraders of ER-α and in which the ER-α degrading properties were prospectively optimized. The lead compound 11l (GDC-0810 or ARN-810) demonstrates robust activity in models of tamoxifen-sensitive and tamoxifen-resistant breast cancer, and is currently in clinical trials in women with locally advanced or metastatic estrogen receptor-positive breast cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/metabolism , Proteolysis/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Small Molecule Libraries/therapeutic use , Tamoxifen/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Breast/drug effects , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Dogs , Drug Discovery , Drug Resistance, Neoplasm/drug effects , Female , Heterografts , Humans , Mice , Rats , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics
8.
Cancer Res ; 72(6): 1494-503, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22266222

ABSTRACT

Continued reliance on the androgen receptor (AR) is now understood as a core mechanism in castration-resistant prostate cancer (CRPC), the most advanced form of this disease. While established and novel AR pathway-targeting agents display clinical efficacy in metastatic CRPC, dose-limiting side effects remain problematic for all current agents. In this study, we report the discovery and development of ARN-509, a competitive AR inhibitor that is fully antagonistic to AR overexpression, a common and important feature of CRPC. ARN-509 was optimized for inhibition of AR transcriptional activity and prostate cancer cell proliferation, pharmacokinetics, and in vivo efficacy. In contrast to bicalutamide, ARN-509 lacked significant agonist activity in preclinical models of CRPC. Moreover, ARN-509 lacked inducing activity for AR nuclear localization or DNA binding. In a clinically valid murine xenograft model of human CRPC, ARN-509 showed greater efficacy than MDV3100. Maximal therapeutic response in this model was achieved at 30 mg/kg/d of ARN-509, whereas the same response required 100 mg/kg/d of MDV3100 and higher steady-state plasma concentrations. Thus, ARN-509 exhibits characteristics predicting a higher therapeutic index with a greater potential to reach maximally efficacious doses in man than current AR antagonists. Our findings offer preclinical proof of principle for ARN-509 as a promising therapeutic in both castration-sensitive and castration-resistant forms of prostate cancer.


Subject(s)
Androgen Antagonists/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Prostatic Neoplasms/drug therapy , Thiohydantoins/therapeutic use , Androgen Antagonists/pharmacokinetics , Anilides/pharmacokinetics , Anilides/therapeutic use , Animals , Antineoplastic Agents, Hormonal/blood , Antineoplastic Agents, Hormonal/pharmacokinetics , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Nitriles/pharmacokinetics , Nitriles/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/blood , Phenylthiohydantoin/pharmacokinetics , Phenylthiohydantoin/therapeutic use , Rats , Receptors, Androgen/drug effects , Thiohydantoins/blood , Thiohydantoins/chemical synthesis , Thiohydantoins/pharmacokinetics , Tosyl Compounds/pharmacokinetics , Tosyl Compounds/therapeutic use , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem Lett ; 18(23): 6151-5, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18954981

ABSTRACT

The design synthesis and SAR of a series of chiral ring-constrained norepinephrine reuptake inhibitors with improved physicochemical properties is described. Typical compounds are potent (IC(50)s<10 nM), selective against the other monoamine transporters, weak CYP2D6 inhibitors (IC(50)s>1 microM) and stable to oxidation by human liver microsomes. In addition, the compounds exhibit a favorable polarity profile.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors , Indans/chemical synthesis , Indans/pharmacology , Neurotransmitter Uptake Inhibitors/chemical synthesis , Neurotransmitter Uptake Inhibitors/pharmacology , Norepinephrine/antagonists & inhibitors , Atomoxetine Hydrochloride , Combinatorial Chemistry Techniques , Drug Design , Humans , Indans/chemistry , Inhibitory Concentration 50 , Microsomes, Liver/metabolism , Molecular Structure , Neurotransmitter Uptake Inhibitors/chemistry , Propylamines/pharmacology , Stereoisomerism , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 18(16): 4491-4, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18672364

ABSTRACT

The synthesis and SAR of a series of chiral heterocyclic ring-constrained norepinephrine reuptake inhibitors are described. The best compounds compare favorably with atomoxetine in potency (IC(50)s<10 nM), selectivity against the other monoamine transporters, and inhibition of CYP2D6 (IC(50)s>1 microM). In addition, the compounds are generally more stable than atomoxetine to oxidative metabolism and thus are likely to have lower clearance in humans.


Subject(s)
Adrenergic Uptake Inhibitors/chemical synthesis , Adrenergic Uptake Inhibitors/pharmacology , Chemistry, Pharmaceutical/methods , Norepinephrine Plasma Membrane Transport Proteins/chemical synthesis , Norepinephrine Plasma Membrane Transport Proteins/pharmacology , Norepinephrine/chemistry , Oxygen/chemistry , Adrenergic Uptake Inhibitors/chemistry , Atomoxetine Hydrochloride , Cytochrome P-450 CYP2D6/chemistry , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Norepinephrine/metabolism , Propylamines/chemistry , Propylamines/pharmacology , Structure-Activity Relationship , Symporters/chemistry
12.
Bioorg Med Chem Lett ; 18(11): 3230-5, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18468895

ABSTRACT

A series of milnacipran analogs containing a heteroaromatic group were synthesized and studied as monoamine transporter inhibitors. Many compounds exhibited higher potency than milnacipran at NET and NET/SERT with no significant change in lipophilicity. For example, compound R-26f was about 10-fold more potent than milnacipran with IC(50) values of 8.7 and 26nM at NET and SERT, respectively.


Subject(s)
Cyclopropanes/chemical synthesis , Cyclopropanes/pharmacology , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/pharmacology , Combinatorial Chemistry Techniques , Cyclopropanes/chemistry , Humans , Milnacipran , Molecular Structure , Norepinephrine/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...