Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(6)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207548

ABSTRACT

Aprostocetus fukutai is a specialist egg parasitoid of the citrus longhorned beetle Anoplophora chinensis, a high-risk invasive pest of hardwood trees. The parasitoid overwinters as diapausing mature larvae within the host egg and emerges in early summer in synchrony with the egg-laying peak of A. chinensis. This study investigated the parasitoid's diapause survival in parasitized host eggs that either remained in potted trees under semi-natural conditions in southern France or were removed from the wood and held at four different humidities (44, 75, 85-93 and 100% RH) at 11 °C or four different temperature regimes (2, 5, 10 and 12.5 °C) at 100% RH in the laboratory. The temperature regimes reflect overwintering temperatures across the parasitoid's geographical distribution in its native range. Results show that the parasitoid resumed its development to the adult stage at normal rearing conditions (22 °C, 100% RH, 14L:10D) after 6- or 7-months cold chilling at both the semi-natural and laboratory conditions. It had a low survival rate (36.7%) on potted plants due to desiccation or tree wound defense response. No parasitoids survived at 44% RH, but survival rate increased with humidity, reaching the highest (93.7%) at 100% RH. Survival rate also increased from 21.0% at 2 °C to 82.8% at 12.5 °C. Post-diapause developmental time decreased with increased humidity or temperature. There was no difference in the lifetime fecundity of emerged females from 2 and 12.5 °C. These results suggest that 100% RH and 12.5 °C are the most suitable diapause conditions for laboratory rearing of this parasitoid.

2.
Environ Entomol ; 49(5): 1041-1048, 2020 10 17.
Article in English | MEDLINE | ID: mdl-32794565

ABSTRACT

Ontsira mellipes Ashmead is a gregarious larval ectoparasitoid of woodboring cerambycids. It is native to North America but can readily attack the exotic Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). This study aimed to develop an efficient rearing system for this parasitoid, as a potential novel association biocontrol agent for the beetle, by investigating the effects of different densities of host (two, three, or four larvae) and parasitoid (one, two, three, four, five, six, seven, and eight female wasps) on Ontsira's parasitization efficiency and reproductive outcomes. Results showed that overall parasitism and total numbers of parasitized hosts or progeny produced increased with host and/or parasitoid densities, but the number of parasitized hosts or progeny produced per female parasitoid decreased with parasitoid density at each given host density. Nonlinear regression indicated a consistent pattern of mutual interference as parasitoid density increased. Additional experiments showed that superparasitism (indirect interference) did not occur probably because the parasitoid detects hosts through vibration cues from host feeding and attacked (thus paralyzed) hosts are no longer detectable. Thus, the interference probably results from direct or exploitative competition. Interestingly, female parasitoids responded to increased parasitoid density with a significant increase in clutch size. Overall, per capita parasitization efficiency or reproductive outcomes were optimized at a low parasitoid-host ratio but with large group size of hosts and parasitoids. Therefore, an optimal combination of exposing three or four parasitoids to four hosts is proposed for efficient mass-rearing of this parasitoid.


Subject(s)
Coleoptera , Hymenoptera , Wasps , Animals , Asian People , Female , Host-Parasite Interactions , Humans , Larva , North America
3.
J Econ Entomol ; 113(5): 2112-2119, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32696965

ABSTRACT

Ontsira mellipes Ashmead is a gregarious larval ectoparasitoid of woodboring cerambycids that is native to North America but can readily attack the exotic Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). To evaluate the potential of the parasitoid as a novel association control agent for the pest beetle, this study investigated some key reproductive traits of the parasitoid, including egg maturation dynamics, and host size preference and suitability in association with the beetle. Results showed that female wasps emerged with a substantial portion (38%) of their lifetime complement of mature eggs and matured eggs rapidly, reaching a peak 4-6 d post-eclosion. The number of mature eggs was positively related to the female wasp's body size. Oviposition prompted production of more mature eggs by young female wasps. The parasitoid did not show a significant preference for large over small hosts in a choice test. Host size did not affect the parasitoid's offspring survival, developmental time, or sex ratio. However, clutch size increased with increasing host size. Female wasps that developed from large hosts had larger body size and consequently a higher mature egg load than those reared from small hosts. Neither longevity nor the total number of parasitized hosts over a female's lifetime was affected by the female's size, but the total number of offspring produced per female increased with the female's size. These results have important implications for improving rearing and field-release strategies as well as understanding the ecological mechanisms underlying host size selection in gregarious parasitoids.


Subject(s)
Coleoptera , Wasps , Animals , Biological Control Agents , Female , Host-Parasite Interactions , Larva , North America , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...