Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 121(19): 9368-77, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15538856

ABSTRACT

The photodissociation dynamics of ethynyl radical, C(2)H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1 x 10(-6)-1.4 x 10(-5) and 1.7 x 10(-3)-3.8 x 10(-3) hartrees, respectively. The photofragments of C(2) and H are produced mainly in the X (1)Sigma(g) (+), a (3)Pi(u), b (3)Sigma(g) (-), c (3)Sigma(u) (+), A (1)Pi(u), B (1)Delta(g) electronic states of C(2) as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C(2)H(2) into C(2) and H is a two step process involving C(2)H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...