Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
ACS Nano ; 10(11): 10237-10244, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27934083

ABSTRACT

Self-assembly via nanoscale phase separation offers an elegant route to fabricate nanocomposites with physical properties unattainable in single-component systems. One important class of nanocomposites are optical metamaterials which exhibit exotic properties and lead to opportunities for agile control of light propagation. Such metamaterials are typically fabricated via expensive and hard-to-scale top-down processes requiring precise integration of dissimilar materials. In turn, there is a need for alternative, more efficient routes to fabricate large-scale metamaterials for practical applications with deep-subwavelength resolution. Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of the VO2-TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured metamaterials and other nanocomposites for desired functionalities.

3.
J Phys Condens Matter ; 28(26): 263001, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27187744

ABSTRACT

Ferroelectrics, with their spontaneous switchable electric polarization and strong coupling between their electrical, mechanical, thermal, and optical responses, provide functionalities crucial for a diverse range of applications. Over the past decade, there has been significant progress in epitaxial strain engineering of oxide ferroelectric thin films to control and enhance the nature of ferroelectric order, alter ferroelectric susceptibilities, and to create new modes of response which can be harnessed for various applications. This review aims to cover some of the most important discoveries in strain engineering over the past decade and highlight some of the new and emerging approaches for strain control of ferroelectrics. We discuss how these new approaches to strain engineering provide promising routes to control and decouple ferroelectric susceptibilities and create new modes of response not possible in the confines of conventional strain engineering. To conclude, we will provide an overview and prospectus of these new and interesting modalities of strain engineering helping to accelerate their widespread development and implementation in future functional devices.

4.
Adv Mater ; 25(43): 6201-6, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24105796

ABSTRACT

n-n Schottky, n-n ohmic, and p-n Schottky heterojunctions based on TiO2 /correlated "metallic" oxide couples exhibit strong solar-light absorption driven by the unique electronic structure of the "metallic" oxides. Photovoltaic and photocatalytic responses are driven by hot electron injection from the "metallic" oxide into the TiO2 , enabling new modalities of operation for energy systems.


Subject(s)
Light , Metals/chemistry , Oxides/chemistry , Catalysis , Methylene Blue/chemistry , Solar Energy , Titanium/chemistry
5.
Opt Express ; 20(27): 28829-38, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263123

ABSTRACT

We report measurements of the temperature dependence of the optical reflectivity, dR/dT of fifteen metallic elements at a wavelength of λ = 1.03 µm by time-domain thermoreflectance (TDTR); and the thermoreflectance of thin-films of Pt, Ta, Al, Au, SrRuO(3), and LaNiO(3) over the wavelength range 0.4 < λ < 1.6 µm using variable angle spectroscopic ellipsometry. At λ = 1.03 µm, Al, Ta, Re, Ru, have high values of thermoreflectance, dR/dT > 6∙10(-5) K(-1), and are good choices as optical transducers for TDTR experiments using a Yb:fiber laser oscillator. If low optical reflectivity and the associated high degree of steady-state heating are not a concern, LaNiO(3) provides an exceptionally sensitive thermometer in the infrared; (1/R)(dR/dT) > 2.5∙10(-4) K(-1) in the wavelength range 0.85 < λ < 1.3 µm. This compilation of data will assist in the design and interpretation of optical pump-probe studies of thermal properties.


Subject(s)
Lasers , Lenses , Metals/chemistry , Transducers , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation , Temperature , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...