Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 18(10): 20220364, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36287142

ABSTRACT

Predator-prey interactions shape ecosystem stability and are influenced by changes in ecosystem productivity. However, because multiple biotic and abiotic drivers shape the trophic responses of predators to productivity, we often observe patterns, but not mechanisms, by which productivity drives food web structure. One way to capture mechanisms shaping trophic responses is to quantify trophic interactions among multiple trophic groups and by using complementary metrics of trophic ecology. In this study, we combine two diet-tracing methods: diet DNA and stable isotopes, for two trophic groups (top predators and intermediate predators) in both low- and high-productivity habitats to elucidate where in the food chain trophic structure shifts in response to changes in underlying ecosystem productivity. We demonstrate that while top predators show increases in isotopic trophic position (δ15N) with productivity, neither their isotopic niche size nor their DNA diet composition changes. Conversely, intermediate predators show clear turnover in DNA diet composition towards a more predatory prey base in high-productivity habitats. Taking this multi-trophic approach highlights how predator identity shapes responses in predator-prey interactions across environments with different underlying productivity, building predictive power for understanding the outcomes of ongoing anthropogenic change.


Subject(s)
Ecosystem , Food Chain , Animals , Predatory Behavior/physiology , Invertebrates , Diet
2.
Ecology ; 103(5): e3634, 2022 05.
Article in English | MEDLINE | ID: mdl-35060625

ABSTRACT

Predator-prey interactions shape ecosystems and can help maintain biodiversity. However, for many of the earth's most biodiverse and abundant organisms, including terrestrial arthropods, these interactions are difficult or impossible to observe directly with traditional approaches. Based on previous theory, it is likely that predator-prey interactions for these organisms are shaped by a combination of predator traits, including body size and species-specific hunting strategies. In this study, we combined diet DNA metabarcoding data of 173 individual invertebrate predators from nine species (a total of 305 individual predator-prey interactions) with an extensive community body size data set of a well-described invertebrate community to explore how predator traits and identity shape interactions. We found that (1) mean size of prey families in the field usually scaled with predator size, with species-specific variation to a general size-scaling relationship (exceptions likely indicating scavenging or feeding on smaller life stages). We also found that (2) although predator hunting traits, including web and venom use, are thought to shape predator-prey interaction outcomes, predator identity more strongly influenced our indirect measure of the relative size of predators and prey (predator:prey size ratios) than either of these hunting traits. Our findings indicate that predator body size and species identity are important in shaping trophic interactions in invertebrate food webs and could help predict how anthropogenic biodiversity change will influence terrestrial invertebrates, the earth's most diverse animal taxonomic group.


Subject(s)
Ecosystem , Predatory Behavior , Animals , Body Size , Food Chain , Humans , Invertebrates
3.
Am J Bot ; 109(1): 83-98, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34695224

ABSTRACT

PREMISE: Foliar fungal endophytes vary in their distributions across landscapes or plant host taxa, indicative of specialized ecologies and host specific adaptations. Accounts of specialization, however, depend on the taxonomic breadth and geographic range of the host plants included in each study. A broad region-scale study or deep sampling of diverse potential host species still remains relatively rare but is becoming increasingly possible with high-throughput sequencing. METHODS: Amplicon sequencing was used to rapidly identify the fungal endophytic community among six pine (Pinus, Pinaceae) species co-occurring across northeastern United States and to test for site and host specialization. We focused on the endophytic genus Lophodermium (Rhytismataceae), whose species members are thought to specialize on different pine species, to test if amplicon sequencing could rapidly verify previously implied or discover new patterns of host specificity. RESULTS: While amplicon sequencing could analyze more samples at greater depths and recover greater numbers of unique Lophodermium taxa than when endophyte communities were surveyed with traditional culturing methods, patterns of specialization were not better supported. This may be because amplicon sequencing can indiscriminately capture non-host specific organisms found incidentally from plant tissues or because we have overestimated host-specificity in the past with biased culturing techniques. CONCLUSIONS: Amplicon sequencing can quickly identify patterns of host specificity by allowing large-scale surveys but has limitations in quantifying the level of intimacy of these relationships.


Subject(s)
Endophytes , Pinus , DNA, Fungal , Endophytes/genetics , Fungi/genetics , High-Throughput Nucleotide Sequencing , Host Specificity , Phylogeny , Pinus/genetics , Plant Leaves/microbiology , Species Specificity
4.
Ecol Evol ; 11(17): 12025-12034, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522358

ABSTRACT

DNA metabarcoding is an emerging tool used to quantify diet in environments and consumer groups where traditional approaches are unviable, including small-bodied invertebrate taxa. However, metabarcoding of small taxa often requires DNA extraction from full body parts (without dissection), and it is unclear whether surface contamination from body parts alters presumed diet presence or diversity.We examined four different measures of diet (presence, rarefied read abundance, richness, and species composition) for a terrestrial invertebrate consumer (the spider Heteropoda venatoria) both collected in its natural environment and fed an offered diet item in contained feeding trials using DNA metabarcoding of full body parts (opisthosomas). We compared diet from consumer individuals surface sterilized to remove contaminants in 10% commercial bleach solution followed by deionized water with a set of unsterilized individuals.We found that surface sterilization did not significantly alter any measure of diet for consumers in either a natural environment or feeding trials. The best-fitting model predicting diet detection in feeding trial consumers included surface sterilization, but this term was not statistically significant (ß = -2.3, p-value = .07).Our results suggest that surface contamination does not seem to be a significant concern in this DNA diet metabarcoding study for consumers in either a natural terrestrial environment or feeding trials. As the field of diet DNA metabarcoding continues to progress into new environmental contexts with various molecular approaches, we suggest ongoing context-specific consideration of the possibility of surface contamination.

5.
New Phytol ; 228(1): 210-225, 2020 10.
Article in English | MEDLINE | ID: mdl-32472573

ABSTRACT

Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity. We explored correlations between leaf nutrient availability and endophyte diversity among Pinus muricata and Vaccinium ovatum plants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California. Endophyte richness decreased in plants with higher leaf nitrogen-to-phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species. We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.


Subject(s)
Endophytes , Plants , Fungi , Soil , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...