Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 165: 110932, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37390663

ABSTRACT

PURPOSE: Detection of hepatocellular carcinoma (HCC) is crucial during surveillance by ultrasound. We previously developed an artificial intelligence (AI) system based on convolutional neural network for detection of focal liver lesions (FLLs) in ultrasound. The primary aim of this study was to evaluate whether the AI system can assist non-expert operators to detect FLLs in real-time, during ultrasound examinations. METHOD: This single-center prospective randomized controlled study evaluated the AI system in assisting non-expert and expert operators. Patients with and without FLLs were enrolled and had ultrasound performed twice, with and without AI assistance. McNemar's test was used to compare paired FLL detection rates and false positives between groups with and without AI assistance. RESULTS: 260 patients with 271 FLLs and 244 patients with 240 FLLs were enrolled into the groups of non-expert and expert operators, respectively. In non-experts, FLL detection rate in the AI assistance group was significantly higher than the no AI assistance group (36.9 % vs 21.4 %, p < 0.001). In experts, FLL detection rates were not significantly different between the groups with and without AI assistance (66.7 % vs 63.3 %, p = 0.32). False positive detection rates in the groups with and without AI assistance were not significantly different in both non-experts (14.2 % vs 9.2 %, p = 0.08) and experts (8.6 % vs 9.0 %, p = 0.85). CONCLUSIONS: The AI system resulted in significant increase in detection of FLLs during ultrasound examinations by non-experts. Our findings may support future use of the AI system in resource-limited settings where ultrasound examinations are performed by non-experts. The study protocol was registered under the Thai Clinical Trial Registry (TCTR20201230003), which is part of the WHO ICTRP Registry Network. The registry can be accessed via the following URL: https://trialsearch.who.int/Trial2.aspx?TrialID=TCTR20201230003.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Artificial Intelligence , Prospective Studies , Contrast Media
2.
Diagnostics (Basel) ; 13(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36673067

ABSTRACT

BACKGROUND: Volatile organic compound (VOC) profiles as biomarkers for hepatocellular carcinoma (HCC) are understudied. We aimed to identify VOCs from the exhaled breath for HCC diagnosis and compare the performance of VOCs to alpha-fetoprotein (AFP). The performance of VOCs for predicting treatment response and the association between VOCs level and survival of HCC patients were also determined. METHODS: VOCs from 124 HCC patients and 219 controls were identified using the XGBoost algorithm. ROC analysis was used to determine VOCs performance in differentiating HCC patients from controls and in discriminating treatment responders from non-responders. The association between VOCs and the survival of HCC patients was analyzed using Cox proportional hazard analysis. RESULTS: The combination of 9 VOCs yielded 70.0% sensitivity, 88.6% specificity, and 75.0% accuracy for HCC diagnosis. When differentiating early HCC from cirrhotic patients, acetone dimer had a significantly higher AUC than AFP, i.e., 0.775 vs. 0.714, respectively, p = 0.001. Acetone dimer classified HCC patients into treatment responders and non-responders, with 95.7% sensitivity, 73.3% specificity, and 86.8% accuracy. Isopropyl alcohol was independently associated with the survival of HCC patients, with an adjusted hazard ratio of 7.23 (95%CI: 1.36-38.54), p = 0.020. CONCLUSIONS: Analysis of VOCs is a feasible noninvasive test for diagnosing and monitoring HCC treatment response.

3.
Sci Rep ; 12(1): 7749, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35545628

ABSTRACT

Despite the wide availability of ultrasound machines for hepatocellular carcinoma surveillance, an inadequate number of expert radiologists performing ultrasounds in remote areas remains a primary barrier for surveillance. We demonstrated feasibility of artificial intelligence (AI) to aid in the detection of focal liver lesions (FLLs) during ultrasound. An AI system for FLL detection in ultrasound videos was developed. Data in this study were prospectively collected at a university hospital. We applied a two-step training strategy for developing the AI system by using a large collection of ultrasound snapshot images and frames from full-length ultrasound videos. Detection performance of the AI system was evaluated and then compared to detection performance by 25 physicians including 16 non-radiologist physicians and 9 radiologists. Our dataset contained 446 videos (273 videos with 387 FLLs and 173 videos without FLLs) from 334 patients. The videos yielded 172,035 frames with FLLs and 1,427,595 frames without FLLs for training on the AI system. The AI system achieved an overall detection rate of 89.8% (95%CI: 84.5-95.0) which was significantly higher than that achieved by non-radiologist physicians (29.1%, 95%CI: 21.2-37.0, p < 0.001) and radiologists (70.9%, 95%CI: 63.0-78.8, p < 0.001). Median false positive detection rate by the AI system was 0.7% (IQR: 1.3%). AI system operation speed reached 30-34 frames per second, showing real-time feasibility. A further study to demonstrate whether the AI system can assist operators during ultrasound examinations is warranted.


Subject(s)
Artificial Intelligence , Liver Neoplasms , Feasibility Studies , Humans , Liver Neoplasms/diagnostic imaging , Radiologists , Ultrasonography
4.
Sci Rep ; 12(1): 5326, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351916

ABSTRACT

Volatile organic compounds (VOCs) profile for diagnosis and monitoring therapeutic response of hepatocellular carcinoma (HCC) has not been well studied. We determined VOCs profile in exhaled breath of 97 HCC patients and 111 controls using gas chromatography-mass spectrometry and Support Vector Machine algorithm. The combination of acetone, 1,4-pentadiene, methylene chloride, benzene, phenol and allyl methyl sulfide provided the highest accuracy of 79.6%, with 76.5% sensitivity and 82.7% specificity in the training set; and 55.4% accuracy, 44.0% sensitivity, and 75.0% specificity in the test set. This combination was correlated with the HCC stages demonstrating by the increased distance from the classification boundary when the stage advanced. For early HCC detection, d-limonene provided a 62.8% sensitivity, 51.8% specificity and 54.9% accuracy. The levels of acetone, butane and dimethyl sulfide were significantly altered after treatment. Patients with complete response had a greater decreased acetone level than those with remaining tumor post-treatment (73.38 ± 56.76 vs. 17.11 ± 58.86 (× 106 AU, p = 0.006). Using a cutoff of 35.9 × 106 AU, the reduction in acetone level predicted treatment response with 77.3% sensitivity, 83.3% specificity, 79.4%, accuracy, and AUC of 0.784. This study demonstrates the feasibility of exhaled VOCs as a non-invasive tool for diagnosis, monitoring of HCC progression and treatment response.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Volatile Organic Compounds , Breath Tests/methods , Carcinoma, Hepatocellular/diagnosis , Exhalation , Humans , Liver Neoplasms/diagnosis , Volatile Organic Compounds/analysis
5.
PLoS One ; 16(6): e0252882, 2021.
Article in English | MEDLINE | ID: mdl-34101764

ABSTRACT

Artificial intelligence (AI) using a convolutional neural network (CNN) has demonstrated promising performance in radiological analysis. We aimed to develop and validate a CNN for the detection and diagnosis of focal liver lesions (FLLs) from ultrasonography (USG) still images. The CNN was developed with a supervised training method using 40,397 retrospectively collected images from 3,487 patients, including 20,432 FLLs (hepatocellular carcinomas (HCCs), cysts, hemangiomas, focal fatty sparing, and focal fatty infiltration). AI performance was evaluated using an internal test set of 6,191 images with 845 FLLs, then externally validated using 18,922 images with 1,195 FLLs from two additional hospitals. The internal evaluation yielded an overall detection rate, diagnostic sensitivity and specificity of 87.0% (95%CI: 84.3-89.6), 83.9% (95%CI: 80.3-87.4), and 97.1% (95%CI: 96.5-97.7), respectively. The CNN also performed consistently well on external validation cohorts, with a detection rate, diagnostic sensitivity and specificity of 75.0% (95%CI: 71.7-78.3), 84.9% (95%CI: 81.6-88.2), and 97.1% (95%CI: 96.5-97.6), respectively. For diagnosis of HCC, the CNN yielded sensitivity, specificity, and negative predictive value (NPV) of 73.6% (95%CI: 64.3-82.8), 97.8% (95%CI: 96.7-98.9), and 96.5% (95%CI: 95.0-97.9) on the internal test set; and 81.5% (95%CI: 74.2-88.8), 94.4% (95%CI: 92.8-96.0), and 97.4% (95%CI: 96.2-98.5) on the external validation set, respectively. CNN detected and diagnosed common FLLs in USG images with excellent specificity and NPV for HCC. Further development of an AI system for real-time detection and characterization of FLLs in USG is warranted.


Subject(s)
Artificial Intelligence , Image Processing, Computer-Assisted/methods , Liver Diseases/diagnosis , Neural Networks, Computer , Ultrasonography/methods , Humans , Liver Diseases/diagnostic imaging , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...