Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Prev Alzheimers Dis ; 10(3): 362-377, 2023.
Article in English | MEDLINE | ID: mdl-37357276

ABSTRACT

Lecanemab (Leqembi®) is approved in the United States for the treatment of Alzheimer's disease (AD) to be initiated in early AD (mild cognitive impairment [MCI] due to AD or mild AD dementia) with confirmed brain amyloid pathology. Appropriate Use Recommendations (AURs) are intended to help guide the introduction of new therapies into real-world clinical practice. Community dwelling patients with AD differ from those participating in clinical trials. Administration of lecanemab at clinical trial sites by individuals experienced with monoclonal antibody therapy also differs from the community clinic-based administration of lecanemab. These AURs use clinical trial data as well as research and care information regarding AD to help clinicians administer lecanemab with optimal safety and opportunity for effectiveness. Safety and efficacy of lecanemab are known only for patients like those participating in the phase 2 and phase 3 lecanemab trials, and these AURs adhere closely to the inclusion and exclusion criteria of the trials. Adverse events may occur with lecanemab including amyloid related imaging abnormalities (ARIA) and infusion reactions. Monitoring guidelines for these events are detailed in this AUR. Most ARIA with lecanemab is asymptomatic, but a few cases are serious or, very rarely, fatal. Microhemorrhages and rare macrohemorrhages may occur in patients receiving lecanemab. Anticoagulation increases the risk of hemorrhage, and the AUR recommends that patients requiring anticoagulants not receive lecanemab until more data regarding this interaction are available. Patients who are apolipoprotein E ε4 (APOE4) gene carriers, especially APOE4 homozygotes, are at higher risk for ARIA, and the AUR recommends APOE genotyping to better inform risk discussions with patients who are lecanemab candidates. Clinician and institutional preparedness are mandatory for use of lecanemab, and protocols for management of serious events should be developed and implemented. Communication between clinicians and therapy candidates or those on therapy is a key element of good clinical practice for the use of lecanemab. Patients and their care partners must understand the potential benefits, the potential harms, and the monitoring requirements for treatment with this agent. Culture-specific communication and building of trust between clinicians and patients are the foundation for successful use of lecanemab.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Alzheimer Disease/genetics , Antibodies, Monoclonal/therapeutic use , Amyloid
2.
J Prev Alzheimers Dis ; 9(2): 221-230, 2022.
Article in English | MEDLINE | ID: mdl-35542993

ABSTRACT

Aducanumab (Aduhelm) is approved in the United States for the treatment of patients with mild cognitive impairment due to Alzheimer's disease or mild AD dementia. Aducanumab Appropriate Use Recommendations (AURs) have been published and have helped guide best practices for use of aducanumab. As real-world use has occurred and more information has accrued, the AURs require refinement. We update the AURs to better inform appropriate patient selection and improve shared decision-making, safety monitoring, and risk mitigation in treated patients. Based on evolving experience we emphasize the importance of detecting past medical conditions that may predispose to amyloid related imaging abnormalities (ARIA) or may increase the likelihood of ARIA complications including autoimmune or inflammatory conditions, seizures, or disorders associated with extensive white matter pathology. The apolipoprotein E ε4 (APOE4) genotype is strongly associated with ARIA and exhibits a gene dose effect. We recommend that clinicians perform APOE genotyping to better inform patient care decisions, discussions regarding risk, and clinician vigilance concerning ARIA. As most ARIA occurs during the titration period of aducanumab, we suggest performing MRI before the 5th, 7th, 9th, and 12th infusions to improve detection. Uncommonly, ARIA may be recurrent or serious; we suggest additional parameters for treatment discontinuation taking these observations into account. It is important to continue to learn from the real-world use of aducanumab and the AURs will continue to evolve as new information becomes available. This AUR update does not address efficacy, price, or insurance coverage and is provided to assist clinicians to establish best practices for use of aducanumab in the treatment of patients with mild cognitive impairment and mild Alzheimer's dementia.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Alzheimer Disease/genetics , Amyloid , Antibodies, Monoclonal, Humanized/adverse effects , Apolipoprotein E4 , Humans , United States
3.
J Prev Alzheimers Dis ; 8(4): 398-410, 2021.
Article in English | MEDLINE | ID: mdl-34585212

ABSTRACT

Aducanumab has been approved by the US Food and Drug Administration for treatment of Alzheimer's disease (AD). Clinicians require guidance on the appropriate use of this new therapy. An Expert Panel was assembled to construct Appropriate Use Recommendations based on the participant populations, conduct of the pivotal trials of aducanumab, updated Prescribing Information, and expert consensus. Aducanumab is an amyloid-targeting monoclonal antibody delivered by monthly intravenous infusions. The pivotal trials included patients with early AD (mild cognitive impairment due to AD and mild AD dementia) who had confirmed brain amyloid using amyloid positron tomography. The Expert Panel recommends that use of aducanumab be restricted to this population in which efficacy and safety have been studied. Aducanumab is titrated to a dose of 10 mg/kg over a 6-month period. The Expert Panel recommends that the aducanumab be titrated to the highest dose to maximize the opportunity for efficacy. Aducanumab can substantially increase the incidence of amyloid-related imaging abnormalities (ARIA) with brain effusion or hemorrhage. Dose interruption or treatment discontinuation is recommended for symptomatic ARIA and for moderate-severe ARIA. The Expert Panel recommends MRIs prior to initiating therapy, during the titration of the drug, and at any time the patient has symptoms suggestive of ARIA. Recommendations are made for measures less cumbersome than those used in trials for the assessment of effectiveness in the practice setting. The Expert Panel emphasized the critical importance of engaging in a process of patient-centered informed decision-making that includes comprehensive discussions and clear communication with the patient and care partner regarding the requirements for therapy, the expected outcome of therapy, potential risks and side effects, and the required safety monitoring, as well as uncertainties regarding individual responses and benefits.


Subject(s)
Alzheimer Disease/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Guidelines as Topic/standards , Amyloid/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Drug-Related Side Effects and Adverse Reactions , Humans , Infusions, Intravenous , Magnetic Resonance Imaging , United States
4.
AJNR Am J Neuroradiol ; 36(4): 653-60, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25614473

ABSTRACT

BACKGROUND AND PURPOSE: Prior MR imaging studies, primarily at 1.5T, established hippocampal atrophy as a biomarker for Alzheimer disease. 3T MR imaging offers a higher contrast and signal-to-noise ratio, yet distortions and intensity uniformity are harder to control. We applied our automated hippocampal segmentation technique to 1.5T and 3T MR imaging data, to determine whether hippocampal atrophy detection was enhanced at 3T. MATERIALS AND METHODS: We analyzed baseline MR imaging data from 166 subjects from the Alzheimer's Disease Neuroimaging Initiative-1 (37 with Alzheimer disease, 76 with mild cognitive impairment, and 53 healthy controls) scanned at 1.5T and 3T. Using multiple linear regression, we analyzed the effect of clinical diagnosis on hippocampal radial distance, while adjusting for sex. 3D statistical maps were adjusted for multiple comparisons by using permutation-based statistics at a threshold of P < .01. RESULTS: Bilaterally significant radial distance differences in the areas corresponding to the cornu ammonis 1, cornu ammonis 2, and subiculum were detected for Alzheimer disease versus healthy controls and mild cognitive impairment versus healthy controls at 1.5T and more profoundly at 3T. Comparison of Alzheimer disease with mild cognitive impairment did not reveal significant differences at either field strength. Subjects who converted from mild cognitive impairment to Alzheimer disease within 3 years of the baseline scan versus nonconverters showed significant differences in the area corresponding to cornu ammonis 1 of the right hippocampus at 3T but not at 1.5T. CONCLUSIONS: While hippocampal atrophy patterns in diagnostic comparisons were similar at 1.5T and 3T, 3T showed a superior signal-to-noise ratio and detected atrophy with greater effect size compared with 1.5T.


Subject(s)
Alzheimer Disease/pathology , Hippocampus/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Aged , Aged, 80 and over , Atrophy/pathology , Cognitive Dysfunction/pathology , Female , Humans , Male
5.
Br J Radiol ; 80 Spec No 2: S78-91, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18445748

ABSTRACT

The cellular hallmarks of Alzheimer's disease (AD) accumulate in the living brain up to 30 years before the characteristic symptoms of dementia can be identified. Brain changes in AD are difficult to distinguish from those in normal ageing, and this has led to the development of powerful computational methods to extract statistical information on the brain changes that are characteristic of AD, mild cognitive impairment (MCI) and different dementia subtypes. Time-lapse maps can be built to show how the disease spreads in the brain, and where treatment affects the disease trajectory. Here, we review three computational approaches to map brain deficits in AD: cortical thickness maps, tensor-based morphometry and hippocampal/ventricular surface modelling. Anatomical structures, modelled as three-dimensional geometrical surfaces, are mathematically combined across subjects for group or interval comparisons. Mathematical concepts from computational surface modelling, fluid mechanics and multivariate statistics are exploited to distinguish disease from normal variations in brain structure. These methods yield insight into the dynamics of AD and MCI, showing where brain changes correlate with cognitive or behavioural changes such as language dysfunction or apathy. We describe cortical and hippocampal changes that distinguish dementia subtypes (such as Lewy-body dementia, HIV-associated dementia and AD), and we describe brain changes that predict recovery or decline in those at risk. Finally, we indicate which computational methods are powerful enough to track dementia in clinical trials, on the basis of their efficiency and sensitivity to early change, and the detail in the measures they provide.


Subject(s)
Aging/pathology , Brain/pathology , Dementia/pathology , Aged , Alzheimer Disease/pathology , Brain Mapping/methods , Cerebral Cortex/pathology , Cerebral Ventricles/pathology , Disease Progression , Hippocampus/pathology , Humans
8.
Med Tr Prom Ekol ; (1): 7-10, 1993.
Article in Russian | MEDLINE | ID: mdl-8075941

ABSTRACT

Psychophysiologic status of firemen during the 24-hours shifts was examined. The certain examinees showed developing psychologic dysadaptation characterized by the marked changes in energy producing body systems. The obtained results serve as a base for the development of medical and prophylactic measures so as to stimulate the capacity for work in firemen.


Subject(s)
Adaptation, Physiological/physiology , Fires , Occupational Exposure , Relief Work , Stress, Psychological/psychology , Adolescent , Adult , Humans , Male , Middle Aged , Stress, Psychological/etiology , Stress, Psychological/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...