Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2402385, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965931

ABSTRACT

Polymerization in the solid state is generally infeasible due to restrictions on mobility. However, in this work, the solid-state photopolymerization of crystalline dicyclopentadiene is demonstrated via photoinitiated ring-opening metathesis polymerization. The source of mobility in the solid state is attributed to the plastic crystal nature of dicyclopentadiene, which yields local short-range mobility due to orientational degrees of freedom. Polymerization in the solid state enables photopatterning, volumetric additive manufacturing of free-standing structures, and fabrication with embedded components. Solid-state photopolymerization of dicyclopentadiene offers a new paradigm for advanced and freeform fabrication of high-performance thermosets.

2.
Nat Chem ; 15(4): 448-450, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37016164
3.
Adv Sci (Weinh) ; 9(14): e2200770, 2022 05.
Article in English | MEDLINE | ID: mdl-35274480

ABSTRACT

The development of chemistry is reported to implement selective dual-wavelength olefin metathesis polymerization for continuous additive manufacturing (AM). A resin formulation based on dicyclopentadiene is produced using a latent olefin metathesis catalyst, various photosensitizers (PSs) and photobase generators (PBGs) to achieve efficient initiation at one wavelength (e.g., blue light) and fast catalyst decomposition and polymerization deactivation at a second (e.g., UV-light). This process enables 2D stereolithographic (SLA) printing, either using photomasks or patterned, collimated light. Importantly, the same process is readily adapted for 3D continuous AM, with printing rates of 36 mm h-1 for patterned light and up to 180 mm h-1 using un-patterned, high intensity light.


Subject(s)
Alkenes , Printing, Three-Dimensional , Alkenes/chemistry , Catalysis , Light , Polymerization
4.
Chemphyschem ; 23(3): e202100673, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-34861081

ABSTRACT

Metal-organic framework (MOF) thin films currently lack the mechanical stability needed for electronic device applications. Polymer-based metal-organic frameworks (polyMOFs) have been suggested to provide mechanical advantages over MOFs, however, the mechanical properties of polyMOFs have not yet been characterized. In this work, we developed a method to synthesize continuous sub-5 µm polyUiO-66(Zr) films on Au substrates, which allowed us to undertake initial mechanical property investigations. Comparisons between polyUiO-66 and UiO-66 thin films determined polyUiO-66 thin films exhibit a lower modulus but similar hardness to UiO-66 thin films. The initial mechanical characterization indicates that further development is needed to leverage the mechanical property advantages of polyMOFs over MOFs. Additionally, the demonstration in this work of a continuous surface-supported polyUiO-66 thin film enables utilization of this emerging class of polyMOF materials in sensors and devices applications.

5.
Biotechnol Biofuels ; 12: 175, 2019.
Article in English | MEDLINE | ID: mdl-31303895

ABSTRACT

BACKGROUND: Valorization of lignin has the potential to significantly improve the economics of lignocellulosic biorefineries. However, its complex structure makes conversion to useful products elusive. One promising approach is depolymerization of lignin and subsequent bioconversion of breakdown products into value-added compounds. Optimizing transport of these depolymerization products into one or more organism(s) for biological conversion is important to maximize carbon utilization and minimize toxicity. Current methods assess internalization of depolymerization products indirectly-for example, growth on, or toxicity of, a substrate. Furthermore, no method has been shown to provide visualization of depolymerization products in individual cells. RESULTS: We applied mass spectrometry to provide direct measurements of relative internalized concentrations of several lignin depolymerization compounds and single-cell microscopy methods to visualize cell-to-cell differences in internalized amounts of two lignin depolymerization compounds. We characterized internalization of 4-hydroxybenzoic acid, vanillic acid, p-coumaric acid, syringic acid, and the model dimer guaiacylglycerol-beta-guaiacyl ether (GGE) in the lignolytic organisms Phanerochaete chrysosporium and Enterobacter lignolyticus and in the non-lignolytic but genetically tractable organisms Saccharomyces cerevisiae and Escherichia coli. The results show varying degrees of internalization in all organisms for all the tested compounds, including the model dimer, GGE. Phanerochaete chrysosporium internalizes all compounds in non-lignolytic and lignolytic conditions at comparable levels, indicating that the transporters for these compounds are not specific to the lignolytic secondary metabolic system. Single-cell microscopy shows that internalization of vanillic acid and 4-hydroxybenzoic acid analogs varies greatly among individual fungal and bacterial cells in a given population. Glucose starvation and chemical inhibition of ATP hydrolysis during internalization significantly reduced the internalized amount of vanillic acid in bacteria. CONCLUSIONS: Mass spectrometry and single-cell microscopy methods were developed to establish a toolset for providing direct measurement and visualization of relative internal concentrations of mono- and di-aryl compounds in microbes. Utilizing these methods, we observed broad variation in intracellular concentration between organisms and within populations and this may have important consequences for the efficiency and productivity of an industrial process for bioconversion. Subsequent application of this toolset will be useful in identifying and characterizing specific transporters for lignin-derived mono- and di-aryl compounds.

6.
J Am Chem Soc ; 131(42): 15375-86, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19795897

ABSTRACT

The hydrothermal reactions of calcium, strontium, and barium with l-, meso-, and d,l-tartaric acid were examined from room temperature to 220 degrees C. We report the synthesis of 13 new phases and crystal structures of 11 alkaline earth tartrates, including an unusual I(3)O(0) framework, [Ba(d,l-Tar)] (Tar = C(4)H(4)O(6)(2-)), with 3-D inorganic connectivity. Each alkaline earth exhibits different phase behavior in the reactions with the three forms of tartaric acid. Calcium forms unique l-, meso-, and d,l-tartrate phases which persist to 220 degrees C. Strontium forms three unique phases at lower temperatures, but above 180 degrees C reactions with l- and d,l-tartaric acid yield the meso phase. Likewise, Ba forms three unique low-temperature phases, but above 200 degrees C reactions with l- and meso-tartaric acid yield the d,l phase. Computational and calorimetric studies of the anhydrous calcium phases, [Ca(l-Tar)] and [Ca(meso-Tar)], strontium phases, [Sr(l-Tar)] and [Sr(meso-Tar)], and barium phases, [Ba(l-Tar)] and [Ba(d,l-Tar)], were performed to determine relative phase stabilities and elucidate the role of thermodynamic and kinetic factors in controlling phase behavior. The computational and calorimetric results were in excellent agreement. The [Ca(meso-Tar)] phase was found to be 9.1 kJ/mol more stable than the [Ca(l-Tar)] phase by computation (total electronic energies) and 2.9 +/- 1.6 kJ/mol more stable by calorimetry (enthalpies of solution). The [Sr(meso-Tar)] phase was found to be 13.4 and 8.1 +/- 1.4 kJ/mol more stable than [Sr(l-Tar)] by computation and calorimetry, respectively. Finally, the [Ba(l-Tar)] phase was found to be 6.4 and 7.0 +/- 1.0 kJ/mol more stable than the [Ba(d,l-Tar)] phase. Our results suggest that the calcium and strontium meso phases are the most thermodynamically stable phases in their systems over the temperature range studied. The phase transitions are controlled by relative thermodynamic stabilities but also by a kinetic factor, likely the barrier to isomerization/racemization of the tartaric acid, which is hypothesized to preclude phase transformations at lower temperatures. In the barium system we find the [Ba(l-Tar)] phase to be the most thermodynamically stable phase at low temperatures, while the [Ba(d,l-Tar)] phase becomes the thermodynamic product at high temperatures, due to a larger entropic contribution.

7.
J Am Chem Soc ; 127(50): 17624-5, 2005 Dec 21.
Article in English | MEDLINE | ID: mdl-16351090

ABSTRACT

N,N'-Disubstituted imidazolium-2-carboxylates are efficient precursors to NHC complexes of Rh, Ir, Pd, and Ru.

8.
J Am Chem Soc ; 127(46): 16299-311, 2005 Nov 23.
Article in English | MEDLINE | ID: mdl-16287324

ABSTRACT

Changing the counteranion along the series Br, BF4, PF6, SbF6 in their ion-paired 2-pyridylmethyl imidazolium salts causes the kinetic reaction products with IrH5(PPh3)2 to switch from chelating N-heterocyclic carbenes (NHCs) having normal C2 (N path) to abnormal C5 binding (AN path). Computational work (DFT) suggests that the AN path involves C-H oxidative addition to Ir(III) to give Ir(V) with little anion dependence. The N path, in contrast, goes by heterolytic C-H activation with proton transfer to the adjacent hydride. The proton that is transferred is accompanied by the counteranion in an anion-coupled proton transfer, leading to an anion dependence of the N path, and therefore of the N/AN selectivity. The N path goes via Ir(III), not Ir(V), because the normal NHC is a much less strong donor ligand than the abnormal NHC. PGSE NMR experiments support the formation of ion-pair in both the reactants and the products. 19F,1H-HOESY NMR experiments indicate an ion-pair structure for the products that is consistent with the computational prediction (ONIOM(B3PW91/UFF)).

9.
J Am Chem Soc ; 126(28): 8795-804, 2004 Jul 21.
Article in English | MEDLINE | ID: mdl-15250733

ABSTRACT

[H2Ir(OCMe2)2L2]BF4 (1) (L = PPh3), a preferred catalyst for tritiation of pharmaceuticals, reacts with model substrate 2-(dimethylamino)pyridine (py-NMe2; py = 2-pyridyl) to give chelate carbene [H2Ir(py-N(Me)CH=)L2]BF4 (2a) via cyclometalation, H2 loss, and reversible alpha-elimination. Agostic intermediate [H2Ir(py-N(Me)CH2-H)L2]BF4) (4a), seen by NMR, is predicted (DFT(B3PW91) computations) to give C-H oxidative addition to form the alkyl intermediate [(H)(eta2-H2)Ir(py-N(Me)CH2-)L2]BF4. Loss of H2 leads to the fully characterized alkyl [HIr(OCMe2)(py-N(Me)CH2-)L2]BF4 (3a(Me2CO)), which loses acetone to give alkylidene hydride 2a by rapid reversible alpha-elimination. 2a rapidly reacts with excess H2 in d6-acetone to generate [H2Ir(OC(CD3)2)2L2]BF4 (1-d12), 3a((CD3)2CO), and py-NMe2 in a 1:1:1 ratio, showing reversibility and accounting for the selective isotope exchange catalyzed by 1. Reaction of 1 with py-N(CH2)4 gives the fully characterized carbene 2c. A cis-L(2) carbene intermediate, cis-2c, observed by NMR, reacts with CO via retro alpha-elimination to give the alkyl 3cCO, while the trans isomer, 2c, does not react; retro alpha-elimination thus requires the Ir-H bond to be orthogonal to the carbene plane. Consistent with experiment, computational studies show a particularly flat PE surface with activation of the agostic C-H bond giving a less stable H2 complex, then formation of a kinetic carbene complex with cis-L, only seen experimentally for py-N(CH2)4. Hydrides at key positions, together with gain or loss of solvent and H2, flatten the PE (DeltaG) surfaces to allow fast catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...