Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Science ; 361(6403)2018 08 17.
Article in English | MEDLINE | ID: mdl-30115782

ABSTRACT

The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.


Subject(s)
Gene Expression Regulation, Plant , Polyploidy , Transcription, Genetic , Triticum/genetics , Bread , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genome, Plant , RNA, Plant/genetics , Sequence Analysis, RNA , Triticum/growth & development
2.
Sci Rep ; 6: 30692, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27503660

ABSTRACT

The wheat avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding.


Subject(s)
Cysteine/metabolism , Plant Breeding/methods , Prolamins/genetics , Triticum/genetics , Alleles , Amino Acid Sequence , Bread/analysis , Chromosome Mapping , Chromosomes, Plant/genetics , DNA, Plant/genetics , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics
3.
Funct Integr Genomics ; 14(1): 1-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24626952

ABSTRACT

The area of plant and animal genomics covers the entire suite of issues in biology because it aims to determine the structure and function of genetic material. Although specific issues define research advances at an organism level, it is evident that many of the fundamental features of genome structure and the translation of encoded information to function share common ground. The Plant and Animal Genome (PAG) conference held in San Diego (California), in January each year provides an overview across all organisms at the genome level, and often it is evident that investments in the human area provide leadership, applications, and discoveries for researchers studying other organisms. This mini-review utilizes the plenary lectures as a basis for summarizing the trends in the genome-level studies of organisms, and the lectures include presentations by Ewan Birney (EBI, UK), Eric Green (NIH, USA), John Butler (NIST, USA), Elaine Mardis (Washington, USA), Caroline Dean (John Innes Centre, UK), Trudy Mackay (NC State University, USA), Sue Wessler (UC Riverside, USA), and Patrick Wincker (Genoscope, France). The work reviewed is based on published papers. Where unpublished information is cited, permission to include the information in this manuscript was obtained from the presenters.


Subject(s)
Genome , Genomics/methods , Genomics/trends , Metagenome , Plants/genetics , Animals , Databases, Genetic , Humans , Neoplasms/genetics , Polymorphism, Single Nucleotide
4.
Epidemiol Infect ; 142(4): 833-42, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23890227

ABSTRACT

Rapid and wide dispersal of passengers after flights makes investigation of flight-related outbreaks challenging. An outbreak of Salmonella Heidelberg was identified in a group of Irish travellers returning from Tanzania. Additional international cases sharing the same flight were identified. Our aim was to determine the source and potential vehicles of infection. Case-finding utilized information exchange using experts' communication networks and national surveillance systems. Demographic, clinical and food history information was collected. Twenty-five additional cases were identified from Ireland, The Netherlands, Norway, USA and Canada. We conducted a case-control study which indicated a significant association between illness and consumption of milk tart (OR 10.2) and an egg dish (OR 6) served on-board the flight. No food consumed before the flight was associated with illness. Cases from countries other than Ireland provided supplementary information that facilitated the identification of likely vehicles of infection. Timely, committed international collaboration is vital in such investigations.


Subject(s)
Air Travel , Disease Outbreaks , Salmonella Food Poisoning/epidemiology , Adolescent , Adult , Aged , Analysis of Variance , Cohort Studies , Food Handling , Food Microbiology , Humans , Internationality , Ireland , Middle Aged , Salmonella Food Poisoning/microbiology , Tanzania , Young Adult
5.
Funct Integr Genomics ; 13(1): 1-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23494190

ABSTRACT

Advances in our understanding of genome structure provide consistent evidence for the existence of a core genome representing species classically defined by phenotype, as well as conditionally dispensable components of the genome that shows extensive variation between individuals of a given species. Generally, conservation of phenotypic features between species reflects conserved features of the genome; however, this is evidently not necessarily always the case as demonstrated by the analysis of the tunicate chordate Oikopleura dioica. In both plants and animals, the methylation activity of DNA and histones continues to present new variables for modifying (eventually) the phenotype of an organism and provides for structural variation that builds on the point mutations, rearrangements, indels, and amplification of retrotransposable elements traditionally considered. The translation of the advances in the structure/function analysis of the genome to industry is facilitated through the capture of research outputs in "toolboxes" that remain accessible in the public domain.


Subject(s)
Genetic Variation/genetics , Genome, Plant , Phenotype , Animals , Biotechnology , Chordata/genetics , DNA Methylation , Informatics , Plants/genetics
6.
Funct Integr Genomics ; 12(4): 573-83, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23161406

ABSTRACT

The genomic resources of small grain cereals that include some of the most important crop species such as wheat, barley, and rye are attaining a level of completion that now is contributing to new structural and functional studies as well as refining molecular marker development and mapping strategies for increasing the efficiency of breeding processes. The integration of new efforts to obtain reference sequences in bread wheat and barley, in particular, is accelerating the acquisition and interpretation of genome-level analyses in both of these major crops.


Subject(s)
Genomics , Plants, Genetically Modified , Triticum/genetics , Physical Chromosome Mapping
7.
Hereditas ; 149(1): 41-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22458440

ABSTRACT

Two x-type high molecular weight glutenin subunits (HMW-GS) in Aegilops tauschii, 1Dx3(t) and 1Dx4(t) were identified by SDS-PAGE and MALDI-TOF-MS. Their complete coding sequences were isolated by AS-PCR. 1Dx3(t) and 1Dx4(t) genes consist of 2535 bp and 2508 bp and encode 845 and 836 amino acid residues, respectively. The deduced molecular masses of 1Dx3(t) and 1Dx4(t) gene products are 87655.26 Da and 86664.24 Da, respectively, well corresponding to the molecular masses measured by MALDI-TOF-MS. A total of 18 SNPs were identified between 1Dx3(t) and 1Dx4(t). Comparing with 1Dx5 subunit, 1Dx3(t) had a six amino acid insertion at 146-151 while the 1Dx4(t) had a nine amino acid deletion when compared with 1Dx3(t) subunit. The authenticity of the cloned 1Dx3(t) and 1Dx4(t) genes were confirmed by successful expression of their ORFs in E. coli. Comparison and phylogenetic tree based on the amino acid and nucleotide sequences confirmed that 1Dx3(t) was most closely related to 1Dx5 subunit that is widely accepted as a superior subunit for bread-making property. The secondary structure prediction demonstrated that 1Dx3(t) subunit has significantly high α-helix and ß-strand contents, suggesting it might have positive effects on dough quality.


Subject(s)
Genes, Plant , Glutens/genetics , Triticum/genetics , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Glutens/chemistry , Glutens/metabolism , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide , Protein Structure, Secondary , Protein Subunits/genetics , Protein Subunits/metabolism , Sequence Alignment , Triticum/classification
8.
Funct Integr Genomics ; 12(1): 1-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22354577

ABSTRACT

The Plant and Animal Genome (PAG, held annually) meeting in January 2012 provided insights into the advances in plant, animal, and microbe genome studies particularly as they impact on our understanding of complex biological systems. The diverse areas of biology covered included the advances in technologies, variation in complex traits, genome change in evolution, and targeting phenotypic changes, across the broad spectrum of life forms. This overview aims to summarize the major advances in research areas presented in the plenary lectures and does not attempt to summarize the diverse research activities covered throughout the PAG in workshops, posters, presentations, and displays by suppliers of cutting-edge technologies.


Subject(s)
Biotechnology , Genome , Phenotype , Plants/genetics , Animals , Evolution, Molecular , Humans
9.
Funct Integr Genomics ; 11(1): 1-11, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21360134

ABSTRACT

The contents of the plenary lectures presented at the Plant and Animal Genome (PAG) meeting in January 2011 are summarized in order to provide some insights into the advances in plant, animal and microbe genome studies as they impact on our understanding of complex biological systems. The areas of biology covered include the dynamics of genome change, biological recognition processes and the new processes that underpin investment in science. This overview does not attempt to summarize the diversity of activities that are covered during the PAG through workshops, posters and the suppliers of cutting-edge technologies, but reviews major advances in specific research areas.


Subject(s)
Biomedical Research , Genome/genetics , Genomics/trends , Animals , Congresses as Topic , Gene Regulatory Networks , Humans
10.
Theor Appl Genet ; 122(1): 151-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20830465

ABSTRACT

A breeding objective for the malting barley industry is to produce lines with softer, plumper grain containing moderate protein content (9-12%) as they are more likely to imbibe water readily and contain more starch per grain, which in turn produces higher levels of malt extract. In a malting barley mapping population, 'Arapiles' × 'Franklin', the most significant and robust quantitative trait locus (QTL) for endosperm hardness was observed on the short arm of chromosome 1H, across three environments over two growing seasons. This accounted for 22.6% (Horsham 2000), 26.8% (Esperance 2001), and 12.0% (Tarranyurk 2001) of the genetic variance and significantly increased endosperm hardness by 2.06-3.03 SKCS hardness units. Interestingly, Arapiles and Franklin do not vary in Ha locus alleles. Therefore, this region, near the centromere on chromosome 1H, may be of great importance when aiming to manipulate endosperm hardness and malting quality. Interestingly, this region, close to the centromere on chromosome 1H, in our study, aligns with the region of the genome that includes the HvCslF9 and the HvGlb1 genes. Potentially, one or both of these genes could be considered to be candidate genes that influence endosperm hardness in the barley grain. Additional QTLs for endosperm hardness were detected on chromosomes 2H, 3H, 6H and 7H, confirming that the hardness trait in barley is complex and multigenic, similar to many malting quality traits of interest.


Subject(s)
Chromosomes, Plant/genetics , Crosses, Genetic , Edible Grain/genetics , Endosperm/genetics , Hordeum/embryology , Hordeum/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping , Genetic Variation , Hardness , Organ Size/genetics , Phenotype
11.
Theor Appl Genet ; 122(4): 735-44, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21060985

ABSTRACT

The stem rust resistance gene Sr2 has provided broad-spectrum protection against stem rust (Puccinia graminis Pers. f. sp. tritici) since its wide spread deployment in wheat from the 1940s. Because Sr2 confers partial resistance which is difficult to select under field conditions, a DNA marker is desirable that accurately predicts Sr2 in diverse wheat germplasm. Using DNA sequence derived from the vicinity of the Sr2 locus, we developed a cleaved amplified polymorphic sequence (CAPS) marker that is associated with the presence or absence of the gene in 115 of 122 (95%) diverse wheat lines. The marker genotype predicted the absence of the gene in 100% of lines which were considered to lack Sr2. Discrepancies were observed in lines that were predicted to carry Sr2 but failed to show the CAPS marker. Given the high level of accuracy observed, the marker provides breeders with a selection tool for one of the most important disease resistance genes of wheat.


Subject(s)
Basidiomycota/physiology , Genes, Plant/genetics , Genetic Techniques , Immunity, Innate/genetics , Plant Diseases/immunology , Plant Stems/microbiology , Triticum/genetics , Alleles , Base Sequence , Genetic Markers/genetics , Molecular Sequence Data , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Stems/genetics , Polymorphism, Single Nucleotide/genetics , Seeds/genetics , Sequence Alignment , Triticum/immunology , Triticum/microbiology
12.
Funct Integr Genomics ; 10(1): 1-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20182762

ABSTRACT

An overview is provided of the advances in plant, animal and human genome studies by summarizing the contents of seven plenary lectures presented at the Plant and Animal Genome (PAG) meeting in January 2010. The area of biology covered was wide and reflected the nature of this fast moving science.


Subject(s)
Genome/genetics , Genomics/trends , Animals , Gene Regulatory Networks/genetics , Genome, Human/genetics , Genome, Plant/genetics , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
14.
Theor Appl Genet ; 118(3): 525-39, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18989655

ABSTRACT

Low-molecular-weight glutenin subunit (LMW-GS) Glu-B3 has a significant influence on the processing quality of the end-use products of common wheat. To characterize the LMW-GS genes at the Glu-B3 locus, gene-specific PCR primers were designed to amplify eight near-isogenic lines and Cheyenne with different Glu-B3 alleles (a, b, c, d, e, f, g, h and i) defined by protein electrophoretic mobility. The complete coding regions of four Glu-B3 genes with complete coding sequence were obtained and designated as GluB3-1, GluB3-2, GluB3-3 and GluB3-4. Ten allele-specific PCR markers designed from the SNPs present in the sequenced variants discriminated the Glu-B3 proteins of electrophoretic mobility alleles a, b, c, d, e, f, g, h and i. These markers were validated on 161 wheat varieties and advanced lines with different Glu-B3 alleles, thus confirming that the markers can be used in marker-assisted breeding for wheat grain processing quality.


Subject(s)
Genes, Plant , Glutens/genetics , Protein Subunits/genetics , Triticum/genetics , Alleles , Chromosomes, Plant , Genetic Markers , Haplotypes , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sequence Analysis, Protein , Triticum/growth & development
15.
Theor Appl Genet ; 118(1): 123-37, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18818897

ABSTRACT

Wheat productivity is commonly limited by a lack of water essential for growth. Carbon isotope discrimination (Delta), through its negative relationship with transpiration efficiency, has been used in selection of higher wheat yields in breeding for rainfed environments. The potential also exists for selection of increased Delta for improved adaptation to irrigated and high rainfall environments. Selection efficiency of Delta would be enhanced with a better understanding of its genetic control. Three wheat mapping populations (Cranbrook/Halberd, Sunco/Tasman and CD87/Katepwa) containing between 161 and 190 F(1)-derived, doubled-haploid progeny were phenotyped for Delta and agronomic traits in 3-5 well-watered environments. The range for Delta was large among progeny (c. 1.2-2.3 per thousand), contributing to moderate-to-high single environment (h (2) = 0.37-0.91) and line-mean (0.63-0.86) heritabilities. Transgressive segregation was large and genetic control complex with between 9 and 13 Delta quantitative trait loci (QTL) identified in each cross. The Delta QTL effects were commonly small, accounting for a modest 1-10% of the total additive genetic variance, while a number of chromosomal regions appeared in two or more populations (e.g. 1BL, 2BS, 3BS, 4AS, 4BS, 5AS, 7AS and 7BS). Some of the Delta genomic regions were associated with variation in heading date (e.g. 2DS, 4AS and 7AL) and/or plant height (e.g. 1BL, 4BS and 4DS) to confound genotypic associations between Delta and grain yield. As a group, high Delta progeny were significantly (P < 0.10-0.01) taller and flowered earlier but produced more biomass and grain yield in favorable environments. After removing the effect of height and heading date, strong genotypic correlations were observed for Delta and both yield and biomass across populations (r (g) = 0.29-0.57, P < 0.05) as might be expected for the favorable experimental conditions. Thus selection for Delta appears beneficial in increasing grain yield and biomass in favorable environments. However, care must be taken to avoid confounding genotypic differences in Delta with stature and development time when selecting for improved biomass and yield especially in environments experiencing terminal droughts. Polygenic control and small size of individual QTL for Delta may reduce the potential for QTL in marker-assisted selection for improved yield of wheat.


Subject(s)
Chromosome Mapping , Environment , Quantitative Trait Loci , Triticum/genetics , Biomass , Carbon Isotopes/metabolism , Chromosomes, Plant , DNA, Plant/genetics , Droughts , Genetic Markers , Genetics, Population , Genotype , Triticum/growth & development
16.
Theor Appl Genet ; 116(4): 481-90, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18074114

ABSTRACT

The Lr34/Yr18 locus has contributed to durable, non-race specific resistance against leaf rust (Puccinia triticina) and stripe rust (P. striiformis f. sp. tritici) in wheat (Triticum aestivum). Lr34/Yr18 also cosegregates with resistance to powdery mildew (Pm38) and a leaf tip necrosis phenotype (Ltn1). Using a high resolution mapping family from a cross between near-isogenic lines in the "Thatcher" background we demonstrated that Lr34/Yr18 also cosegregated with stem rust resistance in the field. Lr34/Yr18 probably interacts with unlinked genes to provide enhanced stem rust resistance in "Thatcher". In view of the relatively low levels of DNA polymorphism reported in the Lr34/Yr18 region, gamma irradiation of the single chromosome substitution line, Lalbahadur(Parula7D) that carries Lr34/Yr18 was used to generate several mutant lines. Characterisation of the mutants revealed a range of highly informative genotypes, which included variable size deletions and an overlapping set of interstitial deletions. The mutants enabled a large number of wheat EST derived markers to be mapped and define a relatively small physical region on chromosome 7DS that carried Lr34/Yr18. Fine scale genetic mapping confirmed the physical mapping and identified a genetic interval of less than 0.5 cM, which contained Lr34/Yr18. Both rice and Brachypodium genome sequences provided useful information for fine mapping of ESTs in wheat. Gene order was more conserved between wheat and Brachypodium than with rice but these smaller grass genomes did not reveal sequence information that could be used to identify a candidate gene for rust resistance in wheat. We predict that Lr34/Yr18 is located within a large insertion in wheat not found at syntenic positions in Brachypodium and rice.


Subject(s)
Basidiomycota/physiology , Genes, Plant/physiology , Immunity, Innate/genetics , Mutation/genetics , Physical Chromosome Mapping , Plant Diseases/microbiology , Triticum/genetics , Chromosomes, Artificial, Bacterial , Chromosomes, Plant/genetics , DNA, Plant/genetics , Expressed Sequence Tags , Genetic Linkage , Genome, Plant , Oryza , Phenotype , Polymerase Chain Reaction , Quantitative Trait Loci , Triticum/microbiology
17.
Rapid Commun Mass Spectrom ; 21(17): 2913-7, 2007.
Article in English | MEDLINE | ID: mdl-17663497

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instrumentation has been used to analyze wheat seed gliadins as an alternative to other established methods, including sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), etc. The MALDI-TOF approach has shown to have many advantages such as high resolution, cost effectiveness and high throughput. MALDI-TOF-based gliadin profiles have been used for fast wheat cultivar identification. However, the genetic information represented by individual gliadin peaks has not been utilized. In this study a wheat doubled haploid population with a genetic linkage map of good coverage was used to assay individual gliadin peaks from MALDI-TOF profiles as molecular markers. Eight segregating peaks in the population were scored as polymorphic across the population. The 1 to 1 segregating ratios validated the scoring of the peaks and all peaks were mapped to the expected chromosomes or linkage groups on the available linkage map: 1 peak on chromosome 1A, 1 on 6A, 4 on 6B and 2 on 6D.


Subject(s)
Genetic Markers/genetics , Gliadin/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Triticum/chemistry , Triticum/genetics , Peptide Mapping/methods , Reproducibility of Results , Sensitivity and Specificity
18.
Theor Appl Genet ; 114(3): 451-60, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17106734

ABSTRACT

Low-molecular-weight glutenin subunits (LMW-GS) play an important role in bread and noodle processing quality by influencing the viscoelasticity and extensibility of dough. The objectives of this study were to characterize Glu-D3 subunit coding genes and to develop molecular markers for identifying Glu-D3 gene haplotypes. Gene specific primer sets were designed to amplify eight wheat cultivars containing Glu-D3a, b, c, d and e alleles, defined traditionally by protein electrophoretic mobility. Three novel Glu-D3 DNA sequences, designated as GluD3-4, GluD3-5 and GluD3-6, were amplified from the eight wheat cultivars. GluD3-4 showed three allelic variants or haplotypes at the DNA level in the eight cultivars, which were designated as GluD3-41, GluD3-42 and GluD3-43. Compared with GluD3-42, a single nucleotide polymorphism (SNP) was detected for GluD3-43 in the coding region, resulting in a pseudo-gene with a nonsense mutation at the 119th position of deduced peptide, and a 3-bp insertion was found in the coding region of GluD3-41, leading to a glutamine insertion at the 249th position of its deduced protein. The coding regions for GluD3-5 and GluD3-6 showed no allelic variation in the eight cultivars tested, indicating that they were relatively conservative in common wheat. Based on the 12 allelic variants of three Glu-D3 genes identified in this study and three detected previously, seven STS markers were established to amplify the corresponding gene sequences in wheat cultivars containing five Glu-D3 alleles (a, b, c, d and e). The seven primer sets M2F12/M2R12, M2F2/M2R2, M2F3/M2R3, M3F1/M3R1, M3F2/M3R2, M4F1/M4R1 and M4F3/M4R3 were specific to the allelic variants GluD3-21/22, GluD3-22, GluD3-23, GluD3-31, GluD3-32, GluD3-41 and GluD3-43, respectively, which were validated by amplifying 20 Chinese wheat cultivars containing alleles a, b, c and f based on protein electrophoretic mobility. These markers will be useful to identify the Glu-D3 gene haplotypes in wheat breeding programs.


Subject(s)
DNA, Plant/genetics , Genes, Plant , Glutens/genetics , Mutation/genetics , Triticum/genetics , Alleles , Amino Acid Sequence , Genetic Markers , Glutens/chemistry , Haplotypes , Molecular Sequence Data , Molecular Weight , Polymerase Chain Reaction , Reproducibility of Results , Sequence Homology
19.
Genome ; 49(6): 689-99, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16936848

ABSTRACT

The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume markers that map to agronomic traits, supporting the accelerated identification of molecular genetic factors underpinning important agronomic attributes in lupin.


Subject(s)
Chromosome Mapping/methods , Databases, Genetic , Fabaceae/genetics , Lupinus/genetics , Cicer/genetics , Computational Biology , Expressed Sequence Tags/chemistry , Genetic Markers , Genome, Plant , Genomics/methods , Lotus/genetics , Medicago truncatula/genetics , Minisatellite Repeats , Pisum sativum/genetics , Glycine max/genetics , Synteny
20.
Theor Appl Genet ; 113(7): 1247-59, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16941095

ABSTRACT

Low-molecular-weight glutenins (LMW-GS) in common wheat (Triticum aestivum L.) are of great importance for processing quality of pan bread and noodles. The objectives of this study are to identify LMW-GS coding genes at GluD3 locus on chromosome 1D and to establish relationships between these genes and GluD3 alleles (a, b, c, d, and e) defined by protein electrophoretic mobility. Specific primer sets were designed to amplify each of the three LMW-GS chromosome 1D gene regions including upstream, coding and downstream regions of eight wheat cultivars containing GluD3 a, b, c, d and e alleles. Three LMW-GS genes, designated as GluD3-1, GluD3-2 and GluD3-3, were amplified from the eight wheat cultivars. The allelic variants of these three genes were analysed at the DNA and protein level. GluD3-1 showed two allelic variants or haplotypes, one common to cultivars containing protein alleles a, d and e (designated GluD3-11) and the other was present in cultivars with alleles b and c (designated GluD3-12). Comparing with GluD3-12, a 3-bp deletion was found in the coding region of the N-terminal repetitive domain of GluD3-11, leading to a glutamine deletion at the 116th position. GluD3-2 had three variants at the DNA level in the eight cultivars, which were designated as GluD3-21, GluD3-22 and GluD3-23. In comparison to GluD3-21, a single nucleotide polymorphism (SNP) was detected for GluD3-22 in the signal peptide region, resulting in an amino acid change from alanine to threonine at the 11th position; and 11 mutations were found at GluD3-23, with five in upstream region, four in coding region and two in downstream region, respectively. GluD3-3 had two haplotypes, designated as GluD3-31 and GluD3-32, both belonging to LMW-s glutenin subunits though their first amino acids in N-terminal region are different. Compared with the GenBank GluD3 genes, nucleotide sequences of GluD3-21 and GluD3-23 were the same as X13306 and AB062875, respectively. GluD3-22 and GluD3-11 had only one-base difference from U86027 and AB062865. GluD3-12 was not found in the GenBank database, indicating a newly identified GluD3 gene variation. GluD3-3 was a new gene different from any other known GluD3 genes. Analyses of the relationship between Glu-D3 alleles defined by protein electrophoretic mobility and different GluD3 gene variations at the DNA or protein level provided molecular basis for DNA based identification of glutenin alleles.


Subject(s)
Alleles , Genetic Variation , Glutens/genetics , Protein Subunits/genetics , Triticum/genetics , Agriculture , Amino Acid Sequence , Base Sequence , Computational Biology , DNA Primers , Electrophoretic Mobility Shift Assay , Haplotypes/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...