Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 581, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755313

ABSTRACT

Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.


Subject(s)
Epigenomics , Genome, Plant , Reproduction, Asexual , Selection, Genetic , Reproduction, Asexual/genetics , Epigenomics/methods , DNA Methylation , Biological Evolution , Genetic Variation , Araceae/genetics , Evolution, Molecular , Genomics/methods
2.
Plants (Basel) ; 12(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299187

ABSTRACT

The Indo-German Science and Technology Centre (IGSTC) funded an Indo-German Workshop on Sustainable Stress Management: Aquatic plants vs. Terrestrial plants (IGW-SSMAT) which was jointly organized at the Friedrich Schiller University of Jena, Germany from 25 to 27 July 2022 by Prof. Dr. Ralf Oelmüller, Friedrich Schiller University of Jena, Germany as the German coordinator and Dr. K. Sowjanya Sree, Central University of Kerala, India as the Indian Coordinator. The workshop constituted researchers working in this field from both India and Germany and brought together these experts in the field of sustainable stress management for scientific discussions, brainstorming and networking.

3.
Plants (Basel) ; 12(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299193

ABSTRACT

Duckweeds (Lemnaceae) are small, simply constructed aquatic higher plants that grow on or just below the surface of quiet waters. They consist primarily of leaf-like assimilatory organs, or fronds, that reproduce mainly by vegetative replication. Despite their diminutive size and inornate habit, duckweeds have been able to colonize and maintain themselves in almost all of the world's climate zones. They are thereby subject to multiple adverse influences during the growing season, such as high temperatures, extremes of light intensity and pH, nutrient shortage, damage by microorganisms and herbivores, the presence of harmful substances in the water, and competition from other aquatic plants, and they must also be able to withstand winter cold and drought that can be lethal to the fronds. This review discusses the means by which duckweeds come to grips with these adverse influences to ensure their survival. Important duckweed attributes in this regard are a pronounced potential for rapid growth and frond replication, a juvenile developmental status facilitating adventitious organ formation, and clonal diversity. Duckweeds have specific features at their disposal for coping with particular environmental difficulties and can also cooperate with other organisms of their surroundings to improve their survival chances.

4.
Plants (Basel) ; 11(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36432762

ABSTRACT

The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.

5.
Physiol Mol Biol Plants ; 27(11): 2621-2633, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34924714

ABSTRACT

Starch can accumulate in both actively growing vegetative fronds and over-wintering propagules, or turions of duckweeds, small floating aquatic plants belonging to the family of the Lemnaceae. The starch synthesizing potential of 36 duckweed species varies enormously, and the starch contents actually occurring in the duckweed tissues are determined by growth conditions, various types of stress and the action of growth regulators. The present review examines the effects of phytohormones and growth retardants, heavy metals, nutrient deficiency and salinity on the accumulation of starch in duckweeds with a view to obtaining high yields of starch as a feedstock for biofuel production. Biotechnological approaches to degrading duckweed starch to its component sugars and the fermentation of these sugars to bio-alcohols are also discussed.

6.
Plants (Basel) ; 10(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34961110

ABSTRACT

Duckweeds comprise a distinctive clade of pleustophytic monocots that traditionally has been classified as the family Lemnaceae. However, molecular evidence has called into question their phylogenetic independence, with some authors asserting instead that duckweeds should be reclassified as subfamily Lemnoideae of an expanded family Araceae. Although a close phylogenetic relationship of duckweeds with traditional Araceae has been supported by multiple studies, the taxonomic disposition of duckweeds must be evaluated more critically to promote nomenclatural stability and utility. Subsuming duckweeds as a morphologically incongruent lineage of Araceae effectively eliminates the family category of Lemnaceae that has been widely used for many years. Instead, we suggest that Araceae subfamily Orontioideae should be restored to family status as Orontiaceae, which thereby would enable the recognition of three morphologically and phylogenetically distinct lineages: Araceae, Lemnaceae, and Orontiaceae.

7.
Plant Cell ; 33(10): 3207-3234, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34273173

ABSTRACT

The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.


Subject(s)
Araceae/genetics , Genome, Plant , Genomics
8.
Front Plant Sci ; 12: 625670, 2021.
Article in English | MEDLINE | ID: mdl-33763089

ABSTRACT

Duckweeds (Lemnaceae) are the smallest and fastest-growing angiosperms. This feature, together with high starch production and good nutritional properties, makes them suitable for several applications, including wastewater treatment, bioenergy production, or feed and food supplement. Due to their reduced morphology and great similarity between diverse species, taxonomic identification of duckweeds is a challenging issue even for experts. Among molecular genotyping methods, DNA barcoding is the most useful tool for species identification without a need for cluster analysis. The combination of two plastid barcoding loci is now considered the gold standard for duckweed classification. However, not all species can be defined with confidence by these markers, and a fast identification method able to solve doubtful cases is missing. Here we show the potential of tubulin-based polymorphism (TBP), a molecular marker based on the intron length polymorphisms of ß-tubulin loci, in the genomic profiling of the genera Spirodela, Landoltia, and Lemna. Ninety-four clones were analyzed, including at least two representatives of each species of the three genera, with a special focus on the very heterogeneous species Lemna minor. We showed that a single PCR amplification with universal primers, followed by agarose gel analysis, was able to provide distinctive fingerprinting profiles for 10 out of 15 species. Cluster analysis of capillary electrophoresis-TBP data provided good separation for the remaining species, although the relationship between L. minor and Lemna japonica was not fully resolved. However, an accurate comparison of TBP profiles provided evidence for the unexpected existence of intraspecific hybrids between Lemna turionifera and L. minor, as further confirmed by amplified fragment length polymorphism and sequence analysis of a specific ß-tubulin locus. Such hybrids could possibly correspond to L. japonica, as originally suggested by E. Landolt. The discovery of interspecific hybrids opens a new perspective to understand the speciation mechanisms in the family of duckweeds.

9.
Genome Res ; 31(2): 225-238, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33361111

ABSTRACT

Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.

10.
Plant Cell Environ ; 44(3): 900-914, 2021 03.
Article in English | MEDLINE | ID: mdl-33300188

ABSTRACT

Flavonoids may mediate UV protection in plants either by screening of harmful radiation or by minimizing the resulting oxidative stress. To help distinguish between these alternatives, more precise knowledge of flavonoid distribution is needed. We used confocal laser scanning microscopy (cLSM) with the "emission fingerprinting" feature to study the cellular and subcellular distribution of flavonoid glucosides in the giant duckweed (Spirodela polyrhiza), and investigated the fitness effects of these compounds under natural UV radiation and copper sulphate addition (oxidative stress) using common garden experiments indoors and outdoors. cLSM "emission fingerprinting" allowed us to individually visualize the major dihydroxylated B-ring-substituted flavonoids, luteolin 7-O-glucoside and luteolin 8-C-glucoside, in cross-sections of the photosynthetic organs. While luteolin 8-C-glucoside accumulated mostly in the vacuoles and chloroplasts of mesophyll cells, luteolin 7-O-glucoside was predominantly found in the vacuoles of epidermal cells. In congruence with its cellular distribution, the mesophyll-associated luteolin 8-C-glucoside increased plant fitness under copper sulphate addition but not under natural UV light treatment, whereas the epidermis-associated luteolin 7-O-glucoside tended to increase fitness under both stresses across chemically diverse genotypes. Taken together, we demonstrate that individual flavonoid glucosides have distinct cellular and subcellular locations and promote duckweed fitness under different abiotic stresses.


Subject(s)
Aquatic Organisms/metabolism , Araceae/metabolism , Flavonoids/metabolism , Glucosides/metabolism , Aquatic Organisms/physiology , Araceae/physiology , Flavonoids/physiology , Fluorescence , Microscopy, Confocal , Oxidative Stress , Stress, Physiological , Ultraviolet Rays
11.
Biology (Basel) ; 11(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35053036

ABSTRACT

The common duckweed (Lemna minor), a freshwater monocot that floats on the surfaces of slow-moving streams and ponds, is commonly used in toxicity testing. The novel Lemna root- regrowth test is a toxicity test performed in replicate test vessels (24-well plates), each containing 3 mL test solution and a 2-3 frond colony. Prior to exposure, roots are excised from the plant, and newly developed roots are measured after 3 days of regrowth. Compared to the three internationally standardized methods, this bioassay is faster (72 h), simpler, more convenient (requiring only a 3-mL) and cheaper. The sensitivity of root regrowth to 3,5-dichlorophenol was statistically the same as using the conventional ISO test method. The results of interlaboratory comparison tests conducted by 10 international institutes showed 21.3% repeatability and 27.2% reproducibility for CuSO4 and 21.28% repeatability and 18.6% reproducibility for wastewater. These validity criteria are well within the generally accepted levels of <30% to 40%, confirming that this test method is acceptable as a standardized biological test and can be used as a regulatory tool. The Lemna root regrowth test complements the lengthier conventional protocols and is suitable for rapid screening of wastewater and priority substances spikes in natural waters.

13.
Nat Commun ; 10(1): 1857, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992439

ABSTRACT

The original HTML version of this Article had an incorrect Published online date of 20 March 2019; it should have been 18 March 2019. This has been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

14.
Nat Commun ; 10(1): 1243, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30886148

ABSTRACT

Mutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. Here we investigate genetic diversity, spontaneous mutation rate and Ne in the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals reveals extremely low intraspecific genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereas Ne is large. These results demonstrate that low genetic diversity can be associated with large-Ne species, where selection can reduce mutation rates to very low levels. This study also highlights that accurate estimates of mutation rate can help to explain seemingly unexpected patterns of genome-wide variation.


Subject(s)
Araceae/genetics , Genetic Variation , Genome, Plant , Mutation Rate , Plant Dispersal/genetics , Africa , Americas , Araceae/classification , Asia , DNA Mutational Analysis , Europe , Phylogeography
15.
Plant Foods Hum Nutr ; 74(2): 223-224, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30887272

ABSTRACT

Duckweeds (Lemnaceae) possess good qualitative and quantitative profiles of nutritional components for its use as human food. However, no studies have been conducted on the probable presence or absence of any adverse effects. The extracts from seven duckweed species (Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Lemna minor, Wolffiella hyalina, Wolffia globosa, and Wolffia microscopica) covering all five genera of the plant family were herewith tested for cytotoxic effects on the human cell lines HUVEC, K-562, and HeLa and for anti-proliferative activity on HUVEC and K-562 cell lines. From these assays, it is evident that duckweeds do not possess any detectable anti-proliferative or cytotoxic effects, thus, the high nutritional value is not diminished by such detrimental factors. The present result is a first step to exclude any harmful effects of highly nutritious duckweed for human.


Subject(s)
Araceae/chemistry , Nutritive Value , Plant Extracts/adverse effects , Cell Line , Cell Proliferation/drug effects , Humans
16.
Front Chem ; 6: 483, 2018.
Article in English | MEDLINE | ID: mdl-30420949

ABSTRACT

Species of the genus Wolffia are traditionally used as human food in some of the Asian countries. Therefore, all 11 species of this genus, identified by molecular barcoding, were investigated for ingredients relevant to human nutrition. The total protein content varied between 20 and 30% of the freeze-dry weight, the starch content between 10 and 20%, the fat content between 1 and 5%, and the fiber content was ~25%. The essential amino acid content was higher or close to the requirements of preschool-aged children according to standards of the World Health Organization. The fat content was low, but the fraction of polyunsaturated fatty acids was above 60% of total fat and the content of n-3 polyunsaturated fatty acids was higher than that of n-6 polyunsaturated fatty acids in most species. The content of macro- and microelements (minerals) not only depended on the cultivation conditions but also on the genetic background of the species. This holds true also for the content of tocopherols, several carotenoids and phytosterols in different species and even intraspecific, clonal differences were detected in Wolffia globosa and Wolffia arrhiza. Thus, the selection of suitable clones for further applications is important. Due to the very fast growth and the highest yield in most of the nutrients, Wolffia microscopica has a high potential for practical applications in human nutrition.

17.
Plant J ; 96(3): 670-684, 2018 11.
Article in English | MEDLINE | ID: mdl-30054939

ABSTRACT

Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole-genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes (BACs) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mcFISH) to seven S. polyrhiza clones, using 106 BACs that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high-depth Oxford Nanopore (ON) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome-wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale, and illustrates the complementarity of independent approaches to produce whole-genome assemblies in the absence of a genetic map.


Subject(s)
Araceae/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics , Chromosome Mapping , Chromosomes, Artificial, Bacterial , In Situ Hybridization, Fluorescence , Nanopores , Synteny
18.
Sci Rep ; 7(1): 3047, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596580

ABSTRACT

Duckweed species have a great potential to develop into fast-growing crops for water remediation and bioenergy production. Seed production and utilization of hybrid vigour are essential steps in this process. However, even in the extensively-studied duckweed species, Lemna gibba, flower primordia were often aborted prior to maturation. Salicylic acid (SA) and agar solidification of the medium promoted flower maturation and resulted in high flowering rates in L. gibba 7741 and 5504. Artificial cross-pollination between individuals of L. gibba 7741 yielded seeds at high frequencies unlike that in L. gibba 5504. In contrast to clone 7741, the anthers of 5504 did not dehisce upon maturation, its artificially released pollen grains had pineapple-like exine with tilted spines. These pollens were not stained by 2,5-diphenylmonotetrazoliumbromide (MTT) and failed to germinate. Therefore, clone 5504 is male sterile and has potential application with respect to hybrid vigour. Moreover, pollination of flowers of 5504 with 7741 pollen grains resulted in intraspecific hybrid seeds, which was confirmed by inter-simple sequence repeat (ISSR) markers. These hybrid seeds germinated at a high frequency, forming new clones.


Subject(s)
Araceae/physiology , Plant Infertility , Araceae/genetics , Araceae/growth & development , Flowers/growth & development , Germination , Microsatellite Repeats , Pollination , Seeds/growth & development
19.
Food Chem ; 217: 266-273, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664634

ABSTRACT

Duckweeds have been consumed as human food since long. Species of the duckweed genera, Spirodela, Landoltia, Lemna, Wolffiella and Wolffia were analysed for protein, fat, and starch contents as well as their amino acid and fatty acid distribution. Protein content spanned from 20% to 35%, fat from 4% to 7%, and starch from 4% to 10% per dry weight. Interestingly, the amino acid distributions are close to the WHO recommendations, having e.g. 4.8% Lys, 2.7% Met+Cys, and 7.7% Phe+Tyr. The content of polyunsaturated fatty acids was between 48 and 71% and the high content of n3 fatty acids resulted in a favourable n6/n3 ratio of 0.5 or less. The phytosterol content in the fastest growing angiosperm, W. microscopica, was 50mgg(-1) lipid. However, the content of trace elements can be adjusted by cultivation conditions. Accordingly, W. hyalina and W. microscopica are recommended for human nutrition.


Subject(s)
Araceae/chemistry , Nutritive Value , Amino Acids/analysis , Fatty Acids/analysis , Food Analysis , Proteins/analysis , Starch/analysis
20.
Plant Physiol Biochem ; 105: 271-281, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27208503

ABSTRACT

The aim of this study was to analyze the metabolism of storage materials in germinating tomato (Solanum lycopersicum) seeds and to determine whether it is regulated by light via phytochromes. Wild type, single and multiple phytochrome A, B1 and B2 mutants were investigated. Imbibed seeds were briefly irradiated with far-red or far-red followed by red light, and germinated in darkness. Triacylglycerols and starch were quantified using biochemical assays in germinating seeds and seedlings during the first 5 days of growth. To investigate the process of fat-carbohydrate transformation, the activity of the glyoxylate cycle was assessed. Our results confirm the role of phytochrome in the control of tomato seed germination. Phytochromes A and B2 were shown to play specific roles, acting antagonistically in far-red light. While the breakdown of triacylglycerols proceeded independently of light, phytochrome control was visible in the next stages of the lipid-carbohydrate transformation. The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were regulated by phytochrome(s). This was reflected in a greater increase of starch content during seedling growth in response to additional red light treatment. This study is the first attempt to build a comprehensive image of storage material metabolism regulation by light in germinating dicotyledonous seeds.


Subject(s)
Germination/radiation effects , Light , Seeds/embryology , Solanum lycopersicum/radiation effects , Biological Transport/radiation effects , Glyoxylates/metabolism , Lipids , Solanum lycopersicum/genetics , Mutation/genetics , Phytochrome A/metabolism , Phytochrome B/metabolism , Plant Proteins/metabolism , Seedlings/metabolism , Seedlings/radiation effects , Seeds/metabolism , Starch/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...