Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 14(3): 807-16, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22103339

ABSTRACT

Diverse strains of the marine planktonic cyanobacterium Synechococcus sp. show consistent differences in their susceptibility to predation. We used mutants of Sargasso Sea strain WH8102 (clade III) to test the hypothesis that cell surface proteins play a role in defence against predation by protists. Predation rates by the heterotrophic dinoflagellate Oxyrrhis marina on mutants lacking the giant SwmB protein were always higher (by 1.6 to 3.9×) than those on wild-type WH8102 cells, and equalled predation rates on a clade I strain (CC9311). In contrast, absence of the SwmA protein, which comprises the S-layer (surface layer of the cell envelope that is external to the outer membrane), had no effect on predation by O. marina. Reductions in predation rate were not due to dissolved substances in Synechococcus cultures, and could not be accounted for by variations in cell hydrophobicity. We hypothesize that SwmB defends Synechococcus WH8102 by interfering with attachment of dinoflagellate prey capture organelles or cell surface receptors. Giant proteins are predicted in the genomes of multiple Synechococcus isolates, suggesting that this defence strategy may be more general. Strategies for resisting predation will contribute to the differential competitive success of different Synechococcus groups, and to the diversity of natural picophytoplankton assemblages.


Subject(s)
Dinoflagellida/physiology , Membrane Proteins/genetics , Synechococcus/genetics , Membrane Proteins/metabolism , Synechococcus/metabolism , Synechococcus/physiology , Water Microbiology
2.
Appl Environ Microbiol ; 77(9): 3074-84, 2011 May.
Article in English | MEDLINE | ID: mdl-21398485

ABSTRACT

Grazing mortality of the marine phytoplankton Synechococcus is dominated by planktonic protists, yet rates of consumption and factors regulating grazer-Synechococcus interactions are poorly understood. One aspect of predator-prey interactions for which little is known are the mechanisms by which Synechococcus avoids or resists predation and, in turn, how this relates to the ability of Synechococcus to support growth of protist grazer populations. Grazing experiments conducted with the raptorial dinoflagellate Oxyrrhis marina and phylogenetically diverse Synechococcus isolates (strains WH8102, CC9605, CC9311, and CC9902) revealed marked differences in grazing rates-specifically that WH8102 was grazed at significantly lower rates than all other isolates. Additional experiments using the heterotrophic nanoflagellate Goniomonas pacifica and the filter-feeding tintinnid ciliate Eutintinnis sp. revealed that this pattern in grazing susceptibility among the isolates transcended feeding guilds and grazer taxon. Synechococcus cell size, elemental ratios, and motility were not able to explain differences in grazing rates, indicating that other features play a primary role in grazing resistance. Growth of heterotrophic protists was poorly coupled to prey ingestion and was influenced by the strain of Synechococcus being consumed. Although Synechococcus was generally a poor-quality food source, it tended to support higher growth and survival of G. pacifica and O. marina relative to Eutintinnis sp., indicating that suitability of Synechococcus varies among grazer taxa and may be a more suitable food source for the smaller protist grazers. This work has developed tractable model systems for further studies of grazer-Synechococcus interactions in marine microbial food webs.


Subject(s)
Alveolata/physiology , Cryptophyta/physiology , Microbial Interactions , Synechococcus/physiology , Alveolata/growth & development , Alveolata/metabolism , Cryptophyta/growth & development , Cryptophyta/metabolism , Microbial Viability
3.
ISME J ; 1(8): 729-42, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18059496

ABSTRACT

Bacterioplankton communities play a key role in aquatic carbon cycling, specifically with respect to the magnitude of organic carbon processed and partitioning of this carbon into biomass and respiratory losses. Studies of bacterioplankton carbon demand (BCD) and growth efficiency (BGE) frequently report higher values in more productive systems, suggesting these aspects of carbon metabolism may be positively coupled. However, the existence of such a relationship in natural aquatic systems has yet to be identified. Using a comprehensive 2-year study of bacterioplankton carbon metabolism in a temperate estuary, we investigated BCD and BGE and explored factors that may modulate their magnitude and coherence, including nutrient concentrations, dissolved nutrient uptake and source and quality of dissolved organic carbon (DOC). During the course of our study, BCD ranged from 0.4 to 15.9 microg l(-1) h(-1), with an overall mean of 3.8 microg l(-1) h(-1). Mean BGE was similar to that reported for other estuarine systems (0.32) and of comparable range (that is, 0.06-0.68). Initial analyses identified a negative correlation between BCD and BGE, yet removal of the effect of temperature revealed an underlying positive coupling that was also correlated with long-term DOC lability. Whereas BCD was weakly related to ambient DOC concentrations, neither BCD nor BGE showed any relationship with ambient nutrient concentrations or nutrient uptake stoichiometries. We conclude that in this carbon-rich estuary, organic matter source and quality play an important role in regulating the magnitude of carbon metabolism and may be more important than nutrient availability alone in the regulation of BGE.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Plankton/metabolism , Water Microbiology , Wetlands , Bacteria/growth & development , Ecosystem , Plankton/growth & development , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...