Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36832897

ABSTRACT

The goal of this study was to develop a rapid RT-PCR enumeration method for Salmonella in pork and beef lymph nodes (LNs) utilizing BAX®-System-SalQuant® as well as to assess the performance of the methodology in comparison with existing ones. For study one: PCR curve development, pork, and beef LNs (n = 64) were trimmed, sterilized, pulverized, spiked with 0.00 to 5.00 Log CFU/LN using Salmonella Typhimurium, and then homogenized with BAX-MP media. Samples were incubated at 42 °C and tested at several time points using the BAX®-System-RT-PCR Assay for Salmonella. Cycle-Threshold values from the BAX®-System, for each Salmonella concentration were recorded and utilized for statistical analysis. For study two: Method comparison; additional pork and beef LNs (n = 52) were spiked and enumerated by (1) 3M™EB-Petrifilm™ + XLD-replica plate, (2) BAX®-System-SalQuant®, and (3) MPN. Linear-fit equations for LNs were estimated with recovery times of 6 h and a limit of quantification (LOQ) of 10 CFU/LN. Slopes and intercepts for LNs using BAX®-System-SalQuant® when compared with MPN were not significantly different (p < 0.05), while the same parameters for 3M™EB-Petrifilm™ + XLD-replica plate were significantly different (p > 0.05). The results support the capability of BAX®-System-SalQuant® to enumerate Salmonella in pork and beef LNs. This development adds support to the use of PCR-based quantification methodologies for pathogen loads in meat products.

2.
Foods ; 12(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36673511

ABSTRACT

The United States Department of Agriculture Food Safety and Inspection Service (USDA FSIS) does not maintain a zero-tolerance policy for Salmonella in poultry and poultry products, despite being a known food safety hazard throughout the poultry industry. In 2016, USDA FSIS established performance standards for a 52-week moving window with the maximum acceptable percent positive for comminuted turkey (325 g sample) at 13.5% (7 of 52 samples). Based upon FSIS verification sampling results from one 52-week moving window, the Salmonella prevalence for each poultry establishment in category 1 (below limit), 2 (meeting limit), or 3 (exceeding limit) are published for public viewing. Moreover, many poultry producers continue to have post-intervention samples test positive. Therefore, the use of quantification would be more valuable to determine the efficacy of process control interventions, corrective actions, and final product Log CFU/g of Salmonella to make rapid, within shift, food safety decisions. Therefore, the objectives of these studies are to develop, verify, and validate a rapid and reliable quantification method utilizing RT-PCR to enumerate Salmonella in the poultry industry from flock to final product and to utilize the method in an application study. BAX® System SalQuant® is an application of the BAX® System Real-Time PCR Assay for Salmonella to enumerate low levels of Salmonella with shortened enrichment times. Curve development encompassed inoculating poultry matrix samples at four levels with an ATCC strain of Salmonella, with three biological replicates per inoculation level, and five technical replicates being run on the BAX® System for various timepoints, gathering the data, and creating a linear-fit equation. A linear-fit equation was provided for each timepoint. The ideal timepoint, based on the statistical parameters surrounding the equation (R2 > 0.80, Log RMSE < 0.60, and enumerable range 0.00 to 4.00 Log CFU/mL (g)) that most accurately estimate Salmonella compared to most probable number (MPN), was chosen to be utilized for further studies.

3.
Foods ; 13(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38201085

ABSTRACT

Poultry is the primary reservoir of Campylobacter, a leading cause of gastroenteritis in the United States. Currently, the selective plating methodology using selective agars, Campy Cefex and Modified Charcoal Cefoperazone Deoxycholate agar, is preferentially used for the quantification of Campylobacter spp. among poultry products. Due to the specific nature of Campylobacter, this methodology is not sensitive, which can lead to skewed detection and quantification results. Therefore, Campylobacter detection and quantification methods are urgently needed. The objective was to develop a shortened enrichment-based quantification method for Campylobacter (CampyQuant™) in post-chill poultry rinsates using the BAX® System Real-Time PCR assay for Campylobacter. The specificity and sensitivity for the detection of C. jejuni, C. coli, and C. lari in pure culture were determined. The BAX® System Real-Time PCR assay consistently detected and identified each species 100% of the time with an enumeration range of 4.00 to 9.00 Log10 CFU/mL. Enrichment time parameters for low-level concentrations (0.00, 1.00, and 2.00 Log10 CFU/mL) of Campylobacter using the BAX® System Real-Time PCR assay were elucidated. It was determined that an enrichment time of 20 h was needed to detect at least 1.00 Log10 CFU/mL of Campylobacter spp. Using the BAX® System Real-Time PCR assay for Campylobacter. As a result, time of detection, detection limits, and enrichment parameters were used to develop the CampyQuant™ linear standard curve using the detected samples from the BAX® System Real-Time PCR assay to quantify the levels in post-chill poultry rinsates. A linear fit equation was generated for each Campylobacter species using the cycle threshold from the BAX® System Real-Time PCR assay to estimate a pre-enrichment of 1.00 to 4.00 Log10 CFU/mL of rinsates detected. The statistical analyses of each equation yielded an R2 of 0.93, 0.76, and 0.94 with a Log10 RMSE of 0.64, 1.09, and 0.81 from C. jejuni, C. coli, and C. lari, respectively. The study suggests that the BAX® System Real-Time PCR assay for Campylobacter is a more rapid, accurate, and efficient alternative method for Campylobacter enumeration.

4.
J Food Prot ; 85(3): 527-533, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34914838

ABSTRACT

ABSTRACT: Foodborne salmonellosis is commonly associated with poultry and poultry products, necessitating continued development of pre- and postharvest food safety interventions and risk management strategies. Evaluation of technologies and strategies is limited by availability of cost-effective, rapid laboratory methods. The objective of this study was to evaluate a commercial qualitative PCR assay and its novel quantitative application to detect and enumerate Salmonella in poultry ceca as an analytical matrix. Ceca were collected at harvest, the contents were homogenized, and paired samples were evaluated with buffered peptone water (BPW) and BAX MP + Supplement (MPS) preenrichment broths followed by PCR screening with a BAX System Q7 PCR and by culture isolation. Additional ceca were inoculated with Salmonella to develop a standard curve for the BAX System SalQuant quantitative PCR application (QA), and estimates were obtained by the QA and most-probable-number (MPN) methods. For preenrichment media, PCR outcomes were equivalent to those of culture isolation for detecting Salmonella in ceca with 95.65 and 87.88% sensitivity and 82.00 and 100.00% specificity (P = 0.074) for BPW and MPS, respectively. However, at the sample level, BPW performed significantly worse (47.92%) than did MPS (68.75%) for overall isolation of Salmonella (P < 0.0001). After standard curve development, the mean QA estimates obtained for the inoculated samples were 1.14 (95% confidence interval [CI]: 0.62 to 1.66), 1.79 (1.50 to 2.08), 2.91 (2.65 to 3.17), and 3.76 (3.26 to 4.25) log CFU/mL for each targeted inoculation of 1.0, 2.0, 3.0, and 4.0 log CFU/mL, respectively, and were within or comparable to the 95% CI values of paired MPN estimates. These data support the use of MPS for the detection and isolation of Salmonella enterica from poultry ceca when screening with PCR and indicate that QA may be useful as an alternative tool to estimate Salmonella loads in poultry ceca, which may support preharvest food safety interventions.


Subject(s)
Cecum , Poultry , Real-Time Polymerase Chain Reaction , Salmonella enterica , Animals , Cecum/microbiology , Chickens , Food Microbiology , Poultry/microbiology , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Salmonella enterica/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...