Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 22272, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097655

ABSTRACT

Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Remyelination , Mice , Animals , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Cell Differentiation , Genome-Wide Association Study , Oligodendroglia , Myelin Sheath/pathology , Multiple Sclerosis/chemically induced , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Mice, Inbred C57BL , Disease Models, Animal , SOXE Transcription Factors/genetics
2.
Glia ; 70(3): 522-535, 2022 03.
Article in English | MEDLINE | ID: mdl-34787332

ABSTRACT

Recently, oligodendrocytes (Ol) have been attributed potential immunomodulatory effects. Yet, the exact mode of interaction with pathogenic CNS infiltrating lymphocytes remains unclear. Here, we attempt to dissect mechanisms of Ol modulation during neuroinflammation and characterize the interaction of Ol with pathogenic T cells. RNA expression analysis revealed an upregulation of immune-modulatory genes and adhesion molecules (AMs), ICAM-1 and VCAM-1, in Ol when isolated from mice undergoing experimental autoimmune encephalomyelitis (EAE). To explore whether AMs are involved in the interaction of Ol with infiltrating T cells, we performed co-culture studies on mature Ol and Th1 cells. Live cell imaging analysis showed direct interaction between both cell types. Eighty percentage of Th1 cells created contacts with Ol that lasted longer than 15 min, which may be regarded as physiologically relevant. Exposure of Ol to Th1 cells or their supernatant resulted in a significant extension of Ol processes, and upregulation of AMs as well as other immunomodulatory genes. Our observations indicate that blocking of oligodendroglial ICAM-1 can reduce the number of Th1 cells initially contacting the Ol. These results suggest that AMs may play a role in the interaction between Ol and Th1 cells. We identified Ol interacting with CD4+ cells in vivo in spinal cord tissue of EAE diseased mice indicating that our in vitro findings are of interest to further scientific research in this field. Further characterization and understanding of Ol interaction with infiltrating cells may lead to new therapeutic strategies enhancing Ol protection and remyelination potential. Oligodendrocytes regulate immune modulatory genes and adhesion molecules during autoimmune neuroinflammation Oligodendrocytes interact with Th1 cells in vitro in a physiologically relevant manner Adhesion molecules may be involved in Ol-Th1 cell interaction.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Intercellular Adhesion Molecule-1/metabolism , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Intercellular Adhesion Molecule-1/genetics , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases , Oligodendroglia/metabolism
3.
Nucleic Acids Res ; 48(3): 1254-1270, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31828317

ABSTRACT

Oligodendrocytes generate myelin in the vertebrate central nervous system and thus ensure rapid propagation of neuronal activity. Their development is controlled by a network of transcription factors that function as determinants of cell identity or as temporally restricted stage-specific regulators. The continuously expressed Sox10 and Myrf, a factor induced during late development, are particularly important for terminal differentiation. How these factors function together mechanistically and influence each other, is not well understood. Here we show that Myrf not only cooperates with Sox10 during the induction of genes required for differentiation and myelin formation. Myrf also inhibits the activity of Sox10 on genes that are essential during earlier phases of oligodendroglial development. By characterization of the exact DNA-binding requirements of Myrf, we furthermore show that cooperative activation is a consequence of joint binding of Sox10 and Myrf to the same regulatory regions. In contrast, inhibition of Sox10-dependent gene activation occurs on genes that lack Myrf binding sites and likely involves physical interaction between Myrf and Sox10 followed by sequestration. These two opposite activities allow Myrf to redirect Sox10 from genes that it activates in oligodendrocyte precursor cells to genes that need to be induced during terminal differentiation.


Subject(s)
Cell Differentiation/genetics , Membrane Proteins/genetics , Oligodendroglia/metabolism , SOXE Transcription Factors/genetics , Transcription Factors/genetics , Animals , Central Nervous System/growth & development , Central Nervous System/metabolism , Embryonic Development/genetics , HEK293 Cells , Humans , Mice , Myelin Sheath/genetics , Neurogenesis/genetics , Rats
4.
PLoS Biol ; 16(9): e2005513, 2018 09.
Article in English | MEDLINE | ID: mdl-30260948

ABSTRACT

The morphological, molecular, and functional heterogeneity of astrocytes is under intense scrutiny, but how this diversity is ontogenetically achieved remains largely unknown. Here, by quantitative in vivo clonal analyses and proliferation studies, we demonstrate that the major cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program comprising (i) a time-dependent decline in both clone size and progenitor multipotency, associated with clone allocation first to the hemispheres and then to the vermis(ii) distinctive clonal relationships among astrocyte types, revealing diverse lineage potentials of embryonic and postnatal progenitors; and (iii) stereotyped clone architectures and recurrent modularities that correlate to layer-specific dynamics of postnatal proliferation/differentiation. In silico simulations indicate that the sole presence of a unique multipotent progenitor at the source of the whole astrogliogenic program is unlikely and rather suggest the involvement of additional committed components.


Subject(s)
Astrocytes/cytology , Cerebellum/cytology , Animals , Animals, Newborn , Cell Cycle , Cell Differentiation , Cell Lineage , Cell Proliferation , Cell Size , Cerebellum/embryology , Clone Cells , Computer Simulation , Female , Humans , Mice, Inbred C57BL , Models, Biological , White Matter/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...