Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400223, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923256

ABSTRACT

We revisit the numerical solutions of vibrational eigenstates of weakly bound homonuclear and heteronuclear noble gas pairs by applying a Fortran program based on the Numerov method. The harmonic, Lennard-Jones (LJ), and Improved Lennard- Jones (ILJ) potential models have been implemented to represent the potential energy curves (PECs). The obtained vibrational energies spectrum was tested on the experimental data and accurate ab initio calculations at CCSD(T)/CBS level. The vibrational eigenvalues and eigenfunctions can be reproduced accurately within the ILJ potential model. Moreover, considering from the calculated lifetime of van der Waals (vdW) complexes, the implementation of ILJ rather than standard LJ potential model has a significant impact on the systems dynamics by providing more representative atomic trajectories when the function is incorporated in force fields for molecular dynamics (MD) simulations. Overall, the ILJ function is the best suited potential model for the representation of vibrational motions and the determination of vibrational energy levels of weakly bound systems, both at equilibrium and non-equilibrium conditions.

2.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144692

ABSTRACT

The ability to remove carbon dioxide from gaseous mixtures is a necessary step toward the reduction of greenhouse gas emissions. As a contribution to this field of research, we performed a molecular dynamics study assessing the separation and adsorption properties of multi-layered graphtriyne membranes on gaseous mixtures of CO2, N2, and H2O. These mixtures closely resemble post-combustion gaseous products and are, therefore, suitable prototypes with which to model possible technological applications in the field of CO2 removal methodologies. The molecular dynamics simulations rely on a fairly accurate description of involved force fields, providing reliable predictions of selectivity and adsorption coefficients. The characterization of the interplay between molecules and membrane structure also permitted us to elucidate the adsorption and crossing processes at an atomistic level of detail. The work is intended as a continuation and a strong enhancement of the modeling research and characterization of such materials as molecular sieves for CO2 storage and removal.


Subject(s)
Greenhouse Gases , Molecular Dynamics Simulation , Adsorption , Carbon Dioxide/chemistry , Gases/chemistry
3.
J Phys Chem A ; 125(45): 9819-9825, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34734525

ABSTRACT

In this work, we investigate a particular class of carbon nanocones, which we name graphannulenes, and present a generalized Hückel rule (GHR) that predicts the character of their ground state based on simply the three topological indices that uniquely define them. Importantly, this rule applies to both flat and curved systems, encompassing a wide variety of known structures that do not satisfy the "classic" 4n + 2 rule such as coronene, corannulene, and Kekulene. We test this rule at the Hückel level of theory for a large number of systems, including structures that are convex and flat, with a saddle-like geometry, and at the CASSCF level of theory for a selected representative subset. All the performed calculations support the GHR that we propose in this work.

4.
Phys Chem Chem Phys ; 22(44): 25918-25929, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33164014

ABSTRACT

Two-dimensional covalent organic frameworks (2D-COFs) with diamine-based linkers have been designed and investigated for CO2/N2 gaseous mixture adsorption and separation via a systematic theoretical study by combining density functional theory (DFT) calculations and force field-based molecular dynamics (MD) simulations. We explored the adsorption sites and adsorption energies of CO2/N2 on 2D-COFs. The gas uptake capacity, adsorption isotherms, permeability, and selectivity were simulated based on an improved formulation of force fields for mixture separation in post-combustion conditions. This theoretical approach provided atomistic understanding and quantitative description of intermolecular interactions governing the physisorption dynamics of the considered systems. The results suggest that 2D-COFs investigated in this study are competitive with other 2D materials for carbon capture and separation and can be considered as alternative molecular sieving materials offering efficient and rapid separation and adsorption of different molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...