Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1307727, 2023.
Article in English | MEDLINE | ID: mdl-38111639

ABSTRACT

The characteristics of biomass and microbial community dynamics, in relation to autotrophic nitrification, were studied in two 20 L stirred tank reactors (STR) with oxic/hypoxic/oxic zones. The bioreactors were fed with synthetic wastewater with stepwise increasing ammonia concentrations (50-200 N mg/L) without organic substrate in the first phase (autotrophic phase) for 35 days (R1) and 15 days (R2), followed by a heterotrophic phase (with supplementation of organic substrate). The settling properties of the biomass, represented by pin-point flocs, gradually improved in both reactors during the autotrophic phase. The pin-point flocs of R1 exhibited granule-like settling properties. The SVI30 in RI gradually improved to 29 mL/g MLSS, and the corresponding SVI30/ SVI10 gradually improved to 0.88 during the autotrophic phase. The settling properties of the biomass deteriorated in both bioreactors during the heterotrophic phase. The protein to polysaccharide ratio (PN:PS ratio) gradually increased in the extracted EPS (in both, loosely bound (LB) and tightly bound (TB) EPS) during the autotrophic phase, in both bioreactors. The TB:LB EPS ratio was higher when the pin-point flocs of R1 showed granule-like settling properties, followed by a decline in TB:LB EPS ratio during the heterotrophic phase. A combination of molecular approaches (droplet digital-PCR (dd-PCR) and 16S rRNA gene sequencing) revealed that Nitrospira were the predominant nitrifying bacteria in the pin-point flocs that show granular sludge-like settling properties during autotrophic phase in R1. Comammox Nitrospira was the dominant ammonia oxidizer in seed biomass and at low ammonia concentrations in both bioreactors. The relative abundance of canonical ammonia-oxidizing bacteria increased with an increase in influent-ammonia concentrations.

2.
Micromachines (Basel) ; 14(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37374835

ABSTRACT

Digital programmable coding metasurfaces (DPCMs) have recently attracted enormous attention and have been broadly applied, owing to their ability to manipulate electromagnetic (EM) wave behaviours and programmable multi-functionality. Recent DPCM works are divided into reflection and transmission types (R-DPCM and T-DPCM, respectively); however, there are only a few reported T-DPCM works in the millimetre-wave spectrum, owing to the difficulty of realising the large-phase controllable range while maintaining low transmission losses with electronic control components. Consequently, most millimetre-wave T-DPCMs are demonstrated only with limited functions in a single design. Additionally, all these designs use high-cost substrate materials that constrain practical applicability, owing to cost-ineffectiveness. Herein, we propose a 1-bit T-DPCM that simultaneously performs three dynamic beam-shaping functions with a single structure for millimetre-wave applications. The proposed structure is completely constructed using low-cost FR-4 materials, and operation of each meta-cell is manipulated using PIN-diodes, thus driving the achievement of multiple effective dynamic functionalities including dual-beam scanning, multi-beam shaping, and orbital-angular-momentum-mode generation. It should be noted that there are no reported millimetre-wave T-DPCMs demonstrating multi-function design, thus showing a gap in the recent literature of millimetre-wave T-DPCMs. Moreover, cost-effectiveness can be significantly enhanced, owing to the construction of the proposed T-DPCM using only low-cost material.

3.
Microsyst Nanoeng ; 8: 43, 2022.
Article in English | MEDLINE | ID: mdl-35498336

ABSTRACT

The development of multifunctional and reconfigurable metasurfaces capable of manipulating electromagnetic waves has created new opportunities for various exciting applications. Extensive efforts have been applied to exploiting active metasurfaces with properties that can be controlled by externally controlling active components. However, previous approaches have poor switch isolation, power handling limitations due to nonlinear effects, and complex biasing networks. Therefore, dynamically tunable metasurfaces have become a burgeoning field in many research areas. This paper reports a hydrodynamic metasurface (HMS) that can be programmed to realize electromagnetic beam scanning on the azimuth and elevation planes. The proposed HMS platform incorporates four micropumps, each controlling four metasurface elements via microfluidic channels, built into the HMS base. The proposed platform regulates microfluidic flow through micropumps, causing irregularities in incident wave transmission phase. An HMS was built as a proof of concept, and far-field scanning experiments were performed. Numerical and experimental results verify the feasibility of electromagnetic beam scanning using a hydrodynamic metasurface. This work advances metasurface research, with very high potential for wide-ranging application and a promising route for replacing bulky cascading active components.

4.
World J Plast Surg ; 11(1): 64-72, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35592223

ABSTRACT

BACKGROUND: Although burn-related injuries are serious and can cause significant morbidity and mortality, this can be alleviated through the appropriate practice of first aid for burns. We aimed to explore the practice of first aid and measure the level of knowledge of burns and burn-related nutrition in Saudi Arabia. Methods: Data were collected using an online questionnaire, distributed among the general Saudi population between Jul and Sep 2020. It included socioeconomic and biographical data, and knowledge and practice of first aid for burns and burn-related nutrition. Data were analyzed using SPSS. Results: Overall, 2437 people were enrolled in this study, of which 59.5% were female. More than half (51.9%) the subjects were between 19 and 25 yr of age. Younger age group (≤25 yr) showed a significantly better practices score (t=4.844; P<0.001). Females exhibited a significantly better knowledge score than males (t=-3.131; P=0.021). Unemployed respondents were significantly more associated with a lower knowledge score (t=4.796; P=0.007) and a lower practices score (t=18.375; P<0.001) while those with a history of exposure to burn injury had a lower knowledge score (t=-4.816; P<0.001) and a lower practices score (t=-3.237; P=0.001). Conclusion: There is a lack of knowledge and practice of burn's first aid and burn-related nutrition. Thus, courses and training in first aid for burns and awareness campaigns are essential in order to improve the knowledge of the general Saudi population.

5.
PLoS One ; 17(1): e0262603, 2022.
Article in English | MEDLINE | ID: mdl-35061828

ABSTRACT

Fate of biofilm sloughing was assessed in a laboratory-scale (LS) integrated fixed-film sequencing batch reactor (IF-SBR) treating synthetic wastewater and in a full-scale (FS) integrated fixed-film activated sludge (IFAS) system treating municipal wastewater. It was observed that the properties of biofilms and flocs, including sludge volume index (SVI), mixed liquor suspended solids (MLSS), effluent suspended solids (ESS), relative hydrophobicity, and composition of extracellular polymeric substance (EPS) were associated with biofilm sloughing and formation of large granular flocs in the LS IF-SBR. In the FS IFAS system, the changes were studied at the molecular level. For example, the extracted EPS content results (the protein to polysaccharide ratio decreased in the flocs and increased in the biofilms, with biofilm sloughing) were complemented with the confocal laser scanning microscopy (CLSM) coupled with molecular specific staining. CLSM analyses revealed that micro-colonies rich in polysaccharides readily sloughed from the carriers. Live-dead staining revealed areas of the biofilm where the viability of biomass was a contributing factor associated with areas of the biofilm susceptible to sloughing. 16S rRNA gene sequencing (Illumina) of FS IFAS samples revealed greater diversity (α-diversity) in biofilms compared to flocs. Biofilm sloughing resulted in a decrease in diversity in biofilms and a corresponding increase in the flocs during sloughing. Microbial population dynamics revealed that bacteria known for denitrification (for example, Comamonadaceae) detached from the biofilms during sloughing, readily associated with the suspended biomass, and were retained in the bioreactors.


Subject(s)
Biomass , Water Purification , Biofilms , Bioreactors , Sewage , Wastewater , Water Purification/methods
6.
World J Microbiol Biotechnol ; 37(9): 158, 2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34420110

ABSTRACT

The estimated global population growth of 81 million people per year, combined with increased rates of urbanization and associated industrial processes, result in volumes of high strength ammonia wastewater that cannot be treated in a cost-effective or sustainable manner using the floc-based conventional activated sludge approach of nitrification and denitrification. Biofilm and aerobic granular sludge technologies have shown promise to significantly improve the performance of biological nitrogen removal systems treating high strength wastewater. This is partly due to enhanced biomass retention and their ability to sustain diverse microbial populations with juxtaposing growth requirements. Recent research has also demonstrated the value of hybrid systems with heterogeneous bioaggregates to mitigate biofilm and granule instability during long-term operation. In the context of high strength ammonia wastewater treatment, conventional nitrification-denitrification is hampered by high energy costs and greenhouse gas emissions. Anammox-based processes such as partial nitritation-anammox and partial denitrification-anammox represent more cost-effective and sustainable methods of removing reactive nitrogen from wastewater. There is also growing interest in the use of photosynthetic bacteria for ammonia recovery from high strength waste streams, such that nitrogen can be captured and concentrated in its reactive form and recycled into high value products. The purpose of this review is to explore recent advancements and emerging approaches related to high strength ammonia wastewater treatment.


Subject(s)
Ammonia/metabolism , Bacteria/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Purification/methods , Ammonia/analysis , Biodegradation, Environmental , Denitrification , Nitrification
7.
Front Microbiol ; 11: 551925, 2020.
Article in English | MEDLINE | ID: mdl-33013783

ABSTRACT

The aim of the study was enrichment of nitrifying bacteria and to investigate the potential of autotrophic fixed-film and hybrid bioreactors to treat high strength ammonia wastewater (up to 1,000 mg N/L). Two types of fixed-film systems [moving bed biofilm reactor (MBBR) and BioCordTM] in two different configurations [sequencing batch reactor (SBR) and a continuous stirred tank reactor (CSTR)] were operated for 306 days. The laboratory-scale bioreactors were seeded with activated sludge from a municipal wastewater treatment plant and fed synthetic wastewater with no organics. Strategies for acclimation included biomass reseeding (during bioreactor start-up), and gradual increase in the influent ammonia concentration [from 130 to 1,000 mg N/L (10% every 5 days)]. Stable ammonia removal was observed up to 750 mg N/L from 45 to 145 days in the MBBR SBR (94-100%) and CSTR (72-100%), and BioCordTM SBR (96-100%) and CSTR (92-100%). Ammonia removal declined to 87% ± 6, in all bioreactors treating 1,000 mg N/L (on day 185). Following long-term operation at 1,000 mg N/L (on day 306), ammonia removal was 93-94% in both the MBBR SBR and BioCordTM CSTR; whereas, ammonia removal was relatively lower in MBBR CSTR (20-35%) and BioCordTM SBR (45-54%). Acclimation to increasing concentrations of ammonia led to the enrichment of nitrifying (Nitrosomonas, Nitrospira, and Nitrobacter) and denitrifying (Comamonas, OLB8, and Rhodanobacter) bacteria [16S rRNA gene sequencing (Illumina)] in all bioreactors. In the hybrid bioreactor, the nitrifying and denitrifying bacteria were relatively more abundant in flocs and biofilms, respectively. The presence of dead cells (in biofilms) suggests that in the absence of an organic substrate, endogenous decay is a likely contributor of nutrients for denitrifying bacteria. The nitrite accumulation and abundance of denitrifying bacteria indicate partial denitrification in fixed-film bioreactors operated under limited carbon conditions. Further studies are required to assess the contribution of organic material produced in autotrophic biofilms (by endogenous decay and soluble microbial products) to the overall treatment process. Furthermore, the possibility of sustaining autotrophic nitrogen in high strength waste-streams in the presence of organic substrates warrants further investigation.

8.
Sensors (Basel) ; 18(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30248923

ABSTRACT

Owing to the rapid growth in wireless data traffic, millimeter-wave (mm-wave) communications have shown tremendous promise and are considered an attractive technique in fifth-generation (5G) wireless communication systems. However, to design robust communication systems, it is important to understand the channel dynamics with respect to space and time at these frequencies. Millimeter-wave signals are highly susceptible to blocking, and they have communication limitations owing to their poor signal attenuation compared with microwave signals. Therefore, by employing highly directional antennas, co-channel interference to or from other systems can be alleviated using line-of-sight (LOS) propagation. Because of the ability to shape, switch, or scan the propagating beam, phased arrays play an important role in advanced wireless communication systems. Beam-switching, beam-scanning, and multibeam arrays can be realized at mm-wave frequencies using analog or digital system architectures. This review article presents state-of-the-art phased arrays for mm-wave mobile terminals (MSs) and base stations (BSs), with an emphasis on beamforming arrays. We also discuss challenges and strategies used to address unfavorable path loss and blockage issues related to mm-wave applications, which sets future directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...