Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 202: 107981, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37639982

ABSTRACT

Nickel (Ni) at a toxic level (80 mg kg-1 of soil) adversely affects the crop performance of fenugreek (Trigonella foenum-graecum L.). Melatonin (MEL), a potent plant growth regulator, is ascribed to offer promising roles in heavy metal stress alleviation. In this study, different doses viz. 0, 25, 50, 75 and 100 µM of MEL were administered to plants through foliage under normal and Ni-stress conditions. The experiment unveiled positive roles of MEL in enhancing root-shoot lengths, fresh-dry weights, seed yield and restoring photosynthetic efficiency assessed in terms of higher Fv/Fm, YII, qP, and lower NPQ values in plants exposed to Ni (80 mg kg-1). MEL supplementation (at 75 µM) effectively restricted Ni accumulation and regulated oxidative stress via modulation of MDA, O2-, H2O2 and NO generation, most prominently. Besides, MEL at 75 µM more conspicuously perked up the activities of antioxidant enzymes like SOD, POX, CAT and APX by 15.7, 20.0, 14.5 and 16.5% higher than the Ni-exposed plants for effective ROS scavenging. Likewise, MEL at 75 µM also efficiently counteracted Ni-generated osmotic stress, through an upscaled accumulation of proline (19.6%) along with the enhancement in the concentration of total phenols (13.6%), total tannins (11.2%), total flavonoids (25.5%) and total alkaloids (19.2%) in plant's leaves. Furthermore, under 80 mg kg-1 Ni stress, MEL at 75 µM improved the seed's trigonelline content by 40.1% higher compared to Ni-disturbed plants, upgrading the pharmacological actions of the plant. Thus, the present study deciphers the envisaged roles of MEL in the alleviation of Ni stress in plants to enhance overall crop productivity.


Subject(s)
Alkaloids , Melatonin , Trigonella , Up-Regulation , Antioxidants , Melatonin/pharmacology , Nickel/toxicity , Hydrogen Peroxide , Metals , Dietary Supplements
2.
Environ Res ; 236(Pt 2): 116851, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37558115

ABSTRACT

Copper (Cu) is an essential micronutrient for plants; however, the excessive accumulation of Cu due to various anthropogenic activities generates progressive pollution of agricultural land and that causes a major constraint for crop production. Excess Cu (80 mg kg-1) in the soil diminished growth and biomass, photosynthetic efficiency and essential oil (EO) content in Mentha arvensis L., while amplifying the antioxidant enzyme's function and reactive oxygen species (ROS) production. Therefore, there is a pressing need to explore effective approaches to overcome Cu toxicity in M. arvensis plants. Thus, the present study unveils the potential of foliar supplementation of two distinct forms of silicon dioxide nanoparticles (SiO2 NPs) i.e., Aerosil 200F and Aerosil 300 to confer Cu stress tolerance attributes to M. arvensis. The experiment demonstrated that applied forms of SiO2 NPs (120 mg L-1), enhanced plants' growth and augmented the photosynthetic efficiency along with the activities of CA (carbonic anhydrase) and NR (nitrate reductase), however, the effects were more accentuated by Aerosil 200F application. Supplementation of SiO2 NPs also exhibited a beneficial effect on the antioxidant machinery of Cu-disturbed plants by raising the level of proline and total phenol as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR), thereby lowering ROS and electrolytic leakage (EL). Interestingly, SiO2 NPs supplementation upscaled EO production in Cu-stressed plants with more pronounced effects received in the case of Aerosil 200F over Aerosil 300. We concluded that the nano form (Aerosil 200F) of SiO2 proved to be the best in improving the Cu-stress tolerance in plants.


Subject(s)
Nanoparticles , Oils, Volatile , Antioxidants/metabolism , Copper/toxicity , Reactive Oxygen Species , Silicon Dioxide/toxicity , Oils, Volatile/toxicity , Nanoparticles/toxicity , Homeostasis , Hydrogen Peroxide , Oxidative Stress
3.
Chemosphere ; 291(Pt 1): 132672, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34756946

ABSTRACT

The application of nanotechnology in agriculture includes the use of nanofertilizers, nanopesticides, and nanoherbicides that enhance plant nutrition without disturbing the soil texture and protect it against microbial infections. Thus, nanotechnology maintains the plant's health by maintaining its soil health. The use of nanoparticles (NPs) in agriculture reduces the chemical spread and nutrient loss and boosts crop yield and productivity. Effect of NPs varies with their applied concentrations, physiochemical properties, and plant species. Various NPs have an impact on the plant to increase biomass productivity, germination rate and their physiology. Also, NPs change the plant molecular mechanisms by altering gene expression. Metal and non-metal oxides of NPs (Au, Ag, ZnO, Fe2O3, TiO2, SiO2, Al2O3, Se, carbon nanotubes, quantum dots) exert an important role in plant growth and development and perform an essential role in stress amelioration. On the other hand, other effects of NPs have also been well investigated by observing their role in growth suppression and inhibition of chlorophyll and photosynthetic efficiency. In this review, we addressed a description of studies that have been made to understand the effects of various kind of NPs, their translocation and interaction with the plants. Also, the phytoremediation approaches of contaminated soil with combined use of NPs for sustainable agriculture is covered.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nanotubes, Carbon , Metal Nanoparticles/toxicity , Plant Development , Plants , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...