Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-143545

ABSTRACT

The recent outbreak of severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 (SARS-CoV-2) causing coronavirus disease (covid19) has posed a great threat to human health. Previous outbreaks of SARS-CoV and Middle East respiratory Syndrome CoV (MERS-CoV) from the same CoV family had posed similar threat to human health and economic growth. To date, not even a single drug specific to any of these CoVs has been developed nor any anti-viral vaccine is available for the treatment of diseases caused by CoVs. Subunits present in spike glycoproteins of SARS-CoV and SARS-CoV-2 are involved in binding to human ACE2 Receptor which is the primary method of viral invasion. As it has been observed in the previous studies that there are very minor differences in the spike glycoproteins of SARS-CoV and SARS-CoV-2. SARS-CoV-2 has an additional furin cleavage site that makes it different from SARS-CoV (Walls et al., 2020). In this study, we have analyzed spike glycoproteins of SARS-CoV-2 and SARS-CoV phylogenetically and subjected them to selection pressure analysis. Selection pressure analysis has revealed some important sites in SARS-CoV-2 and SARS-CoV spike glycoproteins that might be involved in their pathogenicity. Further, we have developed a potential multi-epitope vaccine candidate against SARS-CoV-2 by analyzing its interactions with HLA-B*15:03 subtype. This vaccine consists of multiple T-helper (TH) cells, B-cells, and Cytotoxic T-cells (CTL) epitopes joined by linkers and an adjuvant to increase its immunogenicity. Conservation of selected epitopes in SARS, MERS, and human hosts, suggests that the designed vaccine could provide cross-protection. The vaccine is designed in silico by following a reverse vaccinology method acknowledging its antigenicity, immunogenicity, toxicity, and allergenicity. The vaccine candidate that we have designed as a result of this work shows promising result indicating its potential capability of simulating an immune response.

2.
Scand J Pain ; 18(1): 93-98, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29794283

ABSTRACT

BACKGROUND AND AIMS: Matrix metalloproteinase 9 (MMP9) is an enzyme that may affect degradation of several extracellular matrix (ECM) components in the pelvic ligaments during pregnancy. Previous studies indicate that genetic variations in the gene encoding MMP9 may affect the enzymatic activity. One such genetic variant is a single nucleotide polymorphism (SNP), rs17576 A>G. In this study we investigated whether the MMP9 SNP rs17576 A>G may be associated with increased lumbopelvic pain in 838 pregnant woman. The study was registered with ClinicalTrials.gov (NCT 00476567) on May 21, 2007. METHODS: Lumbopelvic pain-intensity was measured by visual analog scale (VAS) at two time points during pregnancy, T1 (18-22 weeks), T2 (32-36 weeks) and 3 months after delivery. Blood samples were collected at each point and SNP genotyping was carried out using predesigned TaqMan SNP genotyping assays. RESULTS: The results showed a significant association between the number of G alleles and pain-intensity in the evening at T2. The pain among G/G carriers was higher than among A/G carriers, which in turn was higher than among the A/A carriers. The most pronounced association between the G allele and pain-intensity was observed in primiparae. CONCLUSIONS: We conclude that the MMP9 rs17576 A>G polymorphism is associated with increased lumbopelvic pain-intensity during pregnancy. The present data support the hypothesis that lumbopelvic pain during pregnancy may be related to a relaxin - MMP9 - tissue remodeling mechanism. IMPLICATIONS: The present findings may be important for future mechanistic studies on how MMP9 rs17576 A>G may affect changes in the ECM components in pelvic ligaments and lumbopelvic pain-intensity during pregnancy.


Subject(s)
Genetic Predisposition to Disease , Low Back Pain/genetics , Matrix Metalloproteinase 9/genetics , Pelvic Pain/genetics , Polymorphism, Single Nucleotide , Pregnancy Complications/genetics , Adult , Female , Genetic Association Studies , Humans , Middle Aged , Pain Measurement , Postpartum Period , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...