Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(11): e0241541, 2020.
Article in English | MEDLINE | ID: mdl-33206661

ABSTRACT

BACKGROUND: Understanding the factors associated with disease severity and mortality in Coronavirus disease (COVID-19) is imperative to effectively triage patients. We performed a systematic review to determine the demographic, clinical, laboratory and radiological factors associated with severity and mortality in COVID-19. METHODS: We searched PubMed, Embase and WHO database for English language articles from inception until May 8, 2020. We included Observational studies with direct comparison of clinical characteristics between a) patients who died and those who survived or b) patients with severe disease and those without severe disease. Data extraction and quality assessment were performed by two authors independently. RESULTS: Among 15680 articles from the literature search, 109 articles were included in the analysis. The risk of mortality was higher in patients with increasing age, male gender (RR 1.45, 95%CI 1.23-1.71), dyspnea (RR 2.55, 95%CI 1.88-2.46), diabetes (RR 1.59, 95%CI 1.41-1.78), hypertension (RR 1.90, 95%CI 1.69-2.15). Congestive heart failure (OR 4.76, 95%CI 1.34-16.97), hilar lymphadenopathy (OR 8.34, 95%CI 2.57-27.08), bilateral lung involvement (OR 4.86, 95%CI 3.19-7.39) and reticular pattern (OR 5.54, 95%CI 1.24-24.67) were associated with severe disease. Clinically relevant cut-offs for leukocytosis(>10.0 x109/L), lymphopenia(< 1.1 x109/L), elevated C-reactive protein(>100mg/L), LDH(>250U/L) and D-dimer(>1mg/L) had higher odds of severe disease and greater risk of mortality. CONCLUSION: Knowledge of the factors associated of disease severity and mortality identified in our study may assist in clinical decision-making and critical-care resource allocation for patients with COVID-19.


Subject(s)
COVID-19/mortality , Severity of Illness Index , COVID-19/epidemiology , Humans
2.
J Environ Manage ; 228: 529-537, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30273771

ABSTRACT

Membrane fouling is a major challenge in membrane bioreactors (MBRs) and its effective handling is the key to improve their competitiveness. Tilting panel system offers significant improvements for fouling control but is strictly limited to one-sided panel. In this study, we assess a two-way switch tilting panel system that enables two-sided membranes and project its implications on performance and energy footprint. Results show that tilting a panel improves permeance by up to 20% to reach a plateau flux thanks to better contacts between air bubbles and the membrane surface to scour-off the foulant. A plateau permeance could be achieved at aeration rate of as low as 0.90 l min-1, a condition untenable by vertical panel even at twice of the aeration rate. Switching at short periods (<5min) can maintain the hydraulic performance as in no-switch (static system), enables application of a two-sided switching panel. A comparison of vertical panel under 1.80 l min-1 aeration rate with a switching panel at a half of the rate, switched at 1 min period shows ≈10% higher permeance of the later. Since periodic switching consumes a very low energy (0.55% of the total of 0.276 kWh m-3), with reduction of aeration by 50%, the switching tilted panel offers 41% more energy efficient than a referenced full-scale MBR (0.390 kWh m-3). Overall results are very compelling and highly attractive for significant improvements of MBR technologies.


Subject(s)
Bioreactors , Air , Filtration
SELECTION OF CITATIONS
SEARCH DETAIL
...