Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 21(1): 135, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858684

ABSTRACT

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Subject(s)
Giant Viruses , Brazil , Giant Viruses/isolation & purification , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/ultrastructure , Phylogeny , Polymerase Chain Reaction , Acanthamoeba castellanii/virology , Acanthamoeba castellanii/isolation & purification , Soil Microbiology , Sewage/virology , Sequence Analysis, DNA , Seawater/virology , Water Microbiology
2.
J Virol ; 98(6): e0051324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38752754

ABSTRACT

Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE: Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.


Subject(s)
Genome, Viral , Viruses , Brazil , Evolution, Molecular , Genomics/methods , Open Reading Frames , Phylogeny , RNA, Viral/genetics , Viruses/classification , Viruses/genetics
3.
J Virol ; 97(12): e0130923, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38092658

ABSTRACT

IMPORTANCE: Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.


Subject(s)
Evolution, Molecular , Gene Duplication , Giant Viruses , Genome, Viral , Giant Viruses/genetics , Phylogeny
4.
Exp Biol Med (Maywood) ; 248(22): 2045-2052, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37955170

ABSTRACT

The capsid has a central role in viruses' life cycle. Although one of its major functions is to protect the viral genome, the capsid may be composed of elements that, at some point, promote interaction with host cells and trigger infection. Considering the scenario of multiple origins of viruses along the viral evolution, a substantial number of capsid shapes, sizes, and symmetries have been described. In this context, capsids of giant viruses (GV) that infect protists have drawn the attention of the scientific community, especially in the last 20 years, specifically for having bacterial-like dimensions with hundreds of different proteins and exclusive features. For instance, the surface fibrils present on the mimivirus capsid are one of the most intriguing features of the known virosphere. They are 150-nm-long structures attached to a 450-nm capsid, resulting in a particle with a hairy appearance. Surface fibrils have also been described in the capsids of other nucleocytoviruses, although they may differ substantially among them. In this mini review for non-experts, we compile the most important available information on surface fibrils of nucleocytoviruses, discussing their putative functions, composition, length, organization, and origins.


Subject(s)
Giant Viruses , Mimiviridae , Viruses , Capsid Proteins/analysis , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , Giant Viruses/genetics , Mimiviridae/genetics
5.
J Virol ; 97(2): e0182422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36728417

ABSTRACT

Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. IMPORTANCE Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.


Subject(s)
Mimiviridae , Capsid Proteins/genetics , Genome, Viral , Microscopy, Electron , Mimiviridae/genetics , Mimiviridae/ultrastructure , Phylogeny
6.
Curr Protoc ; 2(5): e455, 2022 May.
Article in English | MEDLINE | ID: mdl-35612516

ABSTRACT

This article describes a practical method for prospecting and isolating giant viruses based on direct inoculation of environmental samples into amoeba cultures of Acanthamoeba castellanii. The giant viruses that infect amoebas have already been isolated from various environmental samples in several countries worldwide, including in extreme environments. Here we describe the methodologic procedures regarding the prospecting of giant viruses in A. castellanii, including the preparation of environmental samples, the culture of amoebas, and the observation of cytopathic effects that can indicate the presence and potential isolation of giant viruses. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Sample collection Support Protocol: Propagation of Acanthamoeba castellanii Basic Protocol 2: Prospecting of giant viruses in environmental samples by cytopathic effect analysis.


Subject(s)
Acanthamoeba castellanii , Amoeba , Giant Viruses
7.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215784

ABSTRACT

Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.


Subject(s)
Amoeba/virology , Giant Viruses/genetics , Giant Viruses/isolation & purification , Virology/history , Biodiversity , Brazil , Ecosystem , Genome, Viral , Giant Viruses/classification , Giant Viruses/ultrastructure , History, 21st Century , Phylogeny
8.
J Virol ; 93(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31019058

ABSTRACT

Viruses depend on cells to replicate and can cause considerable damage to their hosts. However, hosts have developed a plethora of antiviral mechanisms to counterattack or prevent viral replication and to maintain homeostasis. Advantageous features are constantly being selected, affecting host-virus interactions and constituting a harsh race for supremacy in nature. Here, we describe a new antiviral mechanism unveiled by the interaction between a giant virus and its amoebal host. Faustovirus mariensis infects Vermamoeba vermiformis, a free-living amoeba, and induces cell lysis to disseminate into the environment. Once infected, the cells release a soluble factor that triggers the encystment of neighbor cells, preventing their infection. Remarkably, infected cells stimulated by the factor encyst and trap the viruses and viral factories inside cyst walls, which are no longer viable and cannot excyst. This unprecedented mechanism illustrates that a plethora of antiviral strategies remains to be discovered in nature.IMPORTANCE Understanding how viruses of microbes interact with its hosts is not only important from a basic scientific point of view but also for a better comprehension of the evolution of life. Studies involving large and giant viruses have revealed original and outstanding mechanisms concerning virus-host relationships. Here, we report a mechanism developed by Vermamoeba vermiformis, a free-living amoeba, to reduce Faustovirus mariensis dissemination. Once infected, V. vermiformis cells release a factor that induces the encystment of neighbor cells, preventing infection of further cells and/or trapping the viruses and viral factories inside the cyst walls. This phenomenon reinforces the need for more studies regarding large/giant viruses and their hosts.


Subject(s)
Amoebozoa/virology , Giant Viruses/physiology , Virus Replication/physiology , Viruses, Unclassified/physiology
9.
Front Microbiol ; 9: 1041, 2018.
Article in English | MEDLINE | ID: mdl-29875752

ABSTRACT

Putative promoter motifs have been described in viruses belonging to the nucleocytoplasmic large DNA viruses (NCLDVs) group; however, few studies have been conducted to search for promoter sequences in newly discovered amoebal giant viruses. Faustovirus and kaumoebavirus are two Asfarviridae-related giant viruses belonging to the NCLDVs group. The phylogenetic relationships among these viruses led us to investigate if the promoter regions previously identified in the asfarvirus genome could be shared by its amoebal virus relatives. Previous studies demonstrated the role of A/T-rich motifs as promoters of asfarvirus. In this study, we reinforce the importance of A/T rich motifs in asfarvirus and show that the TATTT and TATATA motifs are also shared in abundance by faustovirus and kaumoebavirus. Here, we demonstrate that TATTT and TATATA are mostly present in faustovirus and kaumoebavirus genomic intergenic regions (IRs) and that they are widely distributed at 0 to -100 bp upstream to the start codons. We observed that putative promoter motifs are present as one to dozens of repetitions in IRs of faustovirus, kaumoebavirus, and asfarvirus, which is similar to that described previously for marseilleviruses. Furthermore, the motifs were found in most of the upstream regions of the core genes of faustovirus, kaumoebavirus, and asfarvirus, which suggests that the motifs could already be present in the ancestor of these viruses before the irradiation of this group. Our work provides an in-depth analysis of the putative promoter motifs present in asfarvirus, kaumoebavirus, and faustovirus, which reinforces the relationship among these viruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...