Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chemosphere ; 362: 142558, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851513

ABSTRACT

The contamination of water bodies by synthetic organic compounds coupled with climate change and the growing demand for water supply calls for new approaches to water management and treatment. To tackle the decontamination issue, the activation of peroxymonosulfate (PMS) using copper magnetic ferrite (CuMF) nanoparticles prepared under distinct synthesis conditions was assessed to oxidize imidacloprid (IMD) insecticide. After optimization of some operational variables, such as CuMF load (62.5-250 mg L-1), PMS concentration (250-1000 µM), and solution pH (3-10), IMD was completely oxidized in 2 h without interferences from leached metal ions. Such performance was also achieved when using tap water but was inhibited by a simulated municipal wastewater due to scavenging effects promoted by inorganic and organic species. Although there was evidence of the presence of sulfate radicals and singlet oxygen oxidizing species, only four intermediate compounds were detected by liquid chromatography coupled to mass spectrometry analysis, mainly due to hydroxyl addition reactions. Concerning the changes in surface properties of CuMF after use, no morphological or structural changes were observed except a small increase in the charge transfer resistance. Based on the changes of terminal surface groups, PMS activation occurred on Fe sites.

2.
Chemosphere ; 352: 141278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266880

ABSTRACT

Nanometric cobalt magnetic ferrite (CoFe2O4) synthesized by distinct methods was used for in situ chemical activation of peroxymonosulfate (PMS) under neutral conditions to oxidize imidacloprid (IMD) insecticide. The effect of CoFe2O4 load (0.125-1.0 g L-1) and PMS concentration (250-1000 µM) was investigated as well as the influence of phosphate buffer and Co(II) ions. PMS activation by Co(II) ions, including those leached from CoFe2O4 (>50 µg L-1), exhibited a strong influence on IMD oxidation and, apparently, without substantial contributions from the solid phase. Within the prepared solid materials (i.e., using sol-gel and co-precipitation methods), high oxidation rates (ca. 0.5 min-1) of IMD were attained in ultrapure water. Phosphate buffer had no significant influence on the IMD oxidation rate and level, however, its use and solution pH have shown to be important parameters, since higher PMS consumption was observed in the presence of buffered solutions at pH 7. IMD byproducts resulting from hydroxylation reactions and rupture of the imidazolidine ring were detected by mass spectrometry. At optimum conditions (0.125 g L-1 of CoFe2O4 and 500 µM of PMS), the CoFe2O4 nanoparticles exhibited an increase in the charge transfer resistance and an enhancement in the surface hydroxylation after PMS activation, which led to radical (HO● and SO4●-) and nonradical (1O2) species. The latter specie led to high levels of IMD oxidation, even in a complex water matrix, such as simulated municipal wastewater at the expense of one-order decrease in the IMD oxidation rate.


Subject(s)
Cobalt , Ferric Compounds , Insecticides , Neonicotinoids , Nitro Compounds , Peroxides/chemistry , Water , Phosphates
3.
Chemosphere ; 288(Pt 2): 132493, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34637860

ABSTRACT

Contamination of natural water (NW) by emerging contaminants has been widely pointed out as one of the main challenges to ensure high-quality drinking water. Thus, the effectiveness of a solar-driven free chlorine advanced oxidation process simultaneously investigating the elimination of six organic microcontaminants (OMCs) and three bacteria from NW at a pilot-scale was evaluated in this study. Firstly, the solar/free chlorine process was studied at lab-scale using a solar simulator to evaluate the effect of free chlorine concentration (0.5-10 mg L-1) on OMC degradation and generation of toxic oxyanions (e.g., ClO3- ions). Thus, the best free chlorine concentration observed was applied for the simultaneous removal of OMCs and pathogens under natural solar light at pilot scale. At lab-scale, the solar/free chlorine (2.5 mg L-1) process achieved 80% of total degradation in 5 min (1.4 kJ L-1 of accumulative UV energy) with an oxidant consumption of 0.3 mg L-1 and without ClO3- generation. Similar results were attained under natural solar irradiation at a pilot-scale. For all bacteria strains, the legally required detection limit (DL = 1 CFU 100 mL-1) for reclaimed water reuse was attained in a short contact time. Still, more importantly, the solar/free chlorine (2.5 mg L-1) process effectively avoided the possible bacterial regrowth in the post-treated sample after six days. Finally, the combination of free chlorine with solar irradiation provided a simple and energy-efficient process for OMC and bacteria removal in NW at a pilot-scale.


Subject(s)
Chlorine , Water
4.
Chemosphere ; 275: 130010, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33676275

ABSTRACT

Water contamination by contaminants of emerging concern is one of the main challenges to be solved by our desired sustainable society. In the same time, different technologies for water treatment are becoming enough mature to be implemented. In this work, two different advanced oxidation processes (AOP) were investigated: i) electrochemical processes (electrochemical, photoassisted electrochemical, electro Fered-Fenton, and photo-electro Fered-Fenton - PEF-Fered) using a BDD and DSA® electrodes under UVA and UVC irradiation (9 W) and ii) solar-based AOP using four distinct oxidants (HOCl, H2O2, S2O82-, HSO5-) in the presence or absence of Fe2+ ions to oxidize and mineralize imidacloprid (IMD: 50 mg L-1) containing solutions. The PEF-Fered (1.0 mM Fe2+ and 50 mg L-1 h-1 H2O2) under UVA or UVC irradiation and HOCl/UVC (NaCl 17 mM) processes using a BDD and DSA® electrodes (10 mA cm -2), respectively, performed equally well to completely oxidize and mineralize (∼90%) IMD at the expense of only ∼0.3 kWh g-1. Low amounts and highly oxidized byproducts identified through liquid chromatography tandem mass spectrometry were observed for the HOCl/UVC process using a DSA® electrode. Concerning the solar-based AOP, all assessed oxidants (4 mM h-1) successfully oxidized IMD within 3 h of treatment, whereas only H2O2 and HOCl led to significant (∼60%) TOC abatement after 6 h treatment. The use of Fe2+ (0.5 or 1.0 mM) had no significant improvement in the oxidation and mineralization of IMD.


Subject(s)
Insecticides , Water Pollutants, Chemical , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Neonicotinoids , Nitro Compounds , Oxidation-Reduction
5.
ACS Omega ; 5(37): 23808-23821, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32984701

ABSTRACT

Bacterial and organic pollutants are major problems with potential adverse impacts on human health and the environment. A promising strategy to alleviate these impacts consists in designing innovative photocatalysts with a wider spectrum of application. In this paper, we report the improved photocatalytic and antibacterial activities of chemically precipitated Ag3PO4 microcrystals by the incorporation of W at doping levels 0.5, 1, and 2 mol %. The presence of W directly influences the crystallization of Ag3PO4, affecting the morphology, particle size, and surface area of the microcrystals. Also, the characterization via experimental and theoretical approaches evidenced a high density of disordered [AgO4], [PO4], and [WO4] structural clusters due to the substitution of P5+ by W6+ into the Ag3PO4 lattice. This leads to new defect-related energy states, which decreases the band gap energy of the materials (from 2.27 to 2.04 eV) and delays the recombination of e'-h• pairs, leading to an enhanced degradation process. As a result of such behaviors, W-doped Ag3PO4 (Ag3PO4:W) is a better visible-light photocatalyst than Ag3PO4, demonstrated here by the photodegradation of potential environmental pollutants. The degradation of rhodamine B dye was 100% in 4 min for Ag3PO4:W 1%, and for Ag3PO4, the obtained result was 90% of degradation in 15 min of reaction. Ag3PO4:W 1% allowed the total degradation of cephalexin antibiotic in only 4 min, whereas pure Ag3PO4 took 20 min to achieve the same result. For the degradation of imidacloprid insecticide, Ag3PO4:W 1% allowed 90% of degradation, whereas Ag3PO4 allowed 40%, both in 20 min of reaction. Moreover, the presence of W-dopant results in a 16-fold improvement of bactericidal performance against methicillin-resistant Staphylococcus aureus. The outstanding results using the Ag3PO4:W material demonstrated its potential multifunctionality for the control of organic pollutants and bacteria in environmental applications.

6.
J Environ Chem Eng ; 8(6): 104433, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32953450

ABSTRACT

The effects of the supporting electrolytes (SEs) Na2SO4, NaCl, Na2CO3, NaNO3, and Na3PO4 on the anodic oxidation of norfloxacin (NOR) and ciprofloxacin (CIPRO), assessed by the respective degradation kinetics and byproducts and electrolyzed solution antimicrobial activity, are compared. Galvanostatic anodic oxidations were performed in a filter-press flow cell fitted with a boron-doped diamond anode. Removal rates higher than the theoretical one for a process purely controlled by mass transfer were found for all SEs, indicative of contribution by indirect oxidation processes. However, the removal rates for NaCl were about tenfold higher, with the lowest energy consumption per order (EC O) of targeted pollutant removal rate (ca. 0.7 kW h m-3 order-1), a very competitive performance. The TOC removal rates were also affected by the SE, but not as markedly. The antimicrobial activity of the electrolyzed solutions against Escherichia coli showed distinct temporal profiles, depending on the fluoroquinolone and SE. For instance, when Na3PO4 was used, the antimicrobial activity was completely removed for NOR, but none for CIPRO; conversely, when NaCl was used, complete removal was attained only for CIPRO. From LC-MS/MS analyses of Na3PO4 electrolyzed solutions, rupture of the fluoroquinolone ring leading to byproducts with no toxicity against E. coli occurred only for NOR, whereas exactly the opposite occurred for the NaCl solutions. Clearly, the nature of both the SE and the fluoroquinolone influence the oxidation steps of the respective molecule; this was also evidenced by the distinct short-chain carboxylic acids identified in the degradation of NOR and CIPRO.

7.
Chemosphere ; 238: 124575, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31446274

ABSTRACT

Significance of surface and ground water contamination by synthetic organic compounds has been pointed out in a very high number of papers worldwide, as well as the need of application of treatment technologies capable to assure their complete removal. Among these processes, the electrochemical advanced oxidation is an interesting option, especially when irradiated with UVC light (photo-electrochemical, P-EC) to promote homolysis of electrogenerated oxidants. In this work, the herbicide glyphosate (GLP) was used as model compound and it was electrochemically treated under UVC irradiation in the presence of NaCl and using a DSA® and BDD anodes. Total organic carbon concentration was measured throughout the electrolysis, as well as the concentration of short chain carboxylic acids and inorganic ions (NO3-, PO43-,ClO-, ClO3- and ClO4-). The synergism of the P-EC was more pronounced when using a DSA® electrode, which led to complete GLP mineralization in 1 h (0.52 A h L-1), as also confirmed by the stoichiometric formation of NO3- and PO43- ions, with an energy consumption as low as 1.25 kW h g-1. Unexpectedly, the concentration evolution of oxyhalides for the P-EC process using both anodes, especially for DSA® at 10 mA cm-2, showed the production of ClO3-, whereas detection of ClO4- species was only found when using BDD at 100 mA cm-2 for the electrochemical process. Finally, small amounts of carboxylic acids were detected, including dichloroacetic acid, especially when using a BDD electrode.


Subject(s)
Electrochemical Techniques/methods , Glycine/analogs & derivatives , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Carboxylic Acids/analysis , Diamond/chemistry , Electrodes , Glycine/analysis , Oxidants/chemistry , Oxidation-Reduction , Ultraviolet Rays , Glyphosate
9.
Environ Sci Pollut Res Int ; 26(5): 4438-4449, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29876851

ABSTRACT

The electrochemical degradation of ciprofloxacin-CIP (50 mg L-1 in 0.10 mol L-1 Na2SO4) was investigated using a double-sided Ti-Pt/ß-PbO2 anode in a filter-press flow reactor, with identification of oxidation intermediates and follow-up of antimicrobial activity against Escherichia coli. The effect of solution pH, flow rate, current density, and temperature on the CIP removal rate was evaluated. All of these parameters did affect the CIP removal performance; thus, optimized electrolysis conditions were further explored: pH = 10, qV = 6.5 L min-1, j = 30 mA cm-2, and θ = 25 °C. Therefore, CIP was removed within 2 h, whereas ~75% of the total organic carbon concentration (TOC) was removed after 5 h and then, the solution no longer presented antimicrobial activity. When the electrochemical degradation of CIP was investigated using a single-sided boron-doped diamond (BDD) anode, its performance in TOC removal was similar to that of the Ti-Pt/ß-PbO2 anode; considering the higher oxidation power of BDD, the surprisingly good comparative performance of the Ti-Pt/ß-PbO2 anode was ascribed to significantly better hydrodynamic conditions attained in the filter-press reactor used with this electrode. Five initial oxidation intermediates were identified by LC-MS/MS and completely removed after 4 h of electrolysis; since they have also been determined in other degradation processes, there must be similarities in the involved oxidation mechanisms. Five terminal oxidation intermediates (acetic, formic, oxamic, propionic, and succinic acids) were identified by LC-UV and all of them (except acetic acid) were removed after 10 h of electrolysis.


Subject(s)
Anti-Bacterial Agents/analysis , Ciprofloxacin/analysis , Electrochemical Techniques/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Anti-Bacterial Agents/toxicity , Ciprofloxacin/toxicity , Electrochemical Techniques/instrumentation , Electrodes , Escherichia coli/drug effects , Kinetics , Models, Theoretical , Oxidation-Reduction , Water Pollutants, Chemical/toxicity , Water Purification/instrumentation
10.
Chemosphere ; 206: 674-681, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29783052

ABSTRACT

The role of the supporting electrolyte - SE (Na2SO4; NaCl; Na2CO3; NaNO3; Na3PO4 - 0.1 M ionic strength) in the galvanostatic (10 mA cm-2) electrochemical degradation of the fluoroquinolone antibiotic enrofloxacin (ENRO; 100 mg L-1) using a filter-press flow cell with a boron-doped diamond anode was investigated (flow rate, solution volume, and temperature were kept fixed at 420 L h-1, 1.0 L, and 25 °C, respectively). The electrochemical degradation performance with the different SEs was assessed by following up [ENRO], total organic carbon concentration (TOC), oxidation intermediates (detected by LC and LC-QqTOF), and antimicrobial activity towards Escherichia coli as the electrolyses progressed. With NaCl as SE, complete removal of ENRO was attained ∼10 times faster than with the other salts. The determination of terminal oxidation intermediates (short-chain carboxylic acids) produced during the electrolyses allowed concluding that their nature and number is indeed affected by the salt used as SE, most probably due to distinct electrogenerated oxidants. With NaCl, the antimicrobial activity of the electrolyzed solution decreased gradually (to ∼20%) from 8 to 16 h of electrolysis due to the cleavage of the fluoroquinolone structure. On the other hand, with Na2SO4, Na2CO3 and NaNO3 as SEs the growth of Escherichia coli cells was observed only after ∼14 h, whereas it was completely inhibited with Na3PO4. Clearly, the electrooxidation and mineralization of ENRO is strongly affected by the SEs used, which determine the degradation mechanism and, consequently, the removal rates of the solution's organic load and antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Electrolytes/chemistry , Fluoroquinolones/chemistry , Boron/chemistry , Electrodes , Enrofloxacin , Kinetics , Oxidation-Reduction
11.
Chemosphere ; 172: 185-192, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28068570

ABSTRACT

The photo-assisted electrochemical degradation of a real effluent of the atrazine manufacturing process containing atrazine, simazine, hydroxy-triazine and propazine was carried out galvanostatically using a pilot-scale tubular flow reactor prototype containing DSA® and Ti as cathode. The effluent was mainly characterized by a high amount of NaCl, required in the synthesis route used, and it was used as taken in the factory. The variables for process optimization were the current density (3.0, 6.0, and 9.0 mA cm-2) and flow rate (300 and 3,000 L h-1). These later values produces laminar and turbulent flow regimes, with Reynolds numbers of 1,100 and 11,000, respectively. None of the four organics contained in the waste is refractory to the photo-electrochemical treatment and they are depleted with the photo-electrolytic technology using large current densities and appropriate electric charge passed. Both direct electrochemical process and mediated anodic oxidation occur during the treatment. First process occurs at turbulent flow condition and low current densities, while the chemical oxidation process happens at laminar flow condition and high current densities. Atrazine and propazine are efficiently removed at laminar flow conditions, with an almost total depletion for the largest current densities. On the contrary, simazine is efficiently removed in turbulent flow conditions and intermediate current density, with removals higher than 90% for 20 kWh m-3. These results have great significance because they demonstrate the applicability of the electrochemical technology in the treatment of real industrial wastes with a cell specially designed to attain high efficiency in the removal of pollutants.


Subject(s)
Atrazine/chemistry , Electrolysis , Photolysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Industrial Waste/analysis , Pilot Projects
12.
Chemosphere ; 168: 638-647, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27847122

ABSTRACT

The contamination of surface and ground water by antibiotics is of significant importance due to their potential chronic toxic effects to the aquatic and human lives. Thus, in this work, the electrochemical oxidation of cephalexin (CEX) was carried out in a one compartment filter-press flow cell using a boron-doped diamond (BDD) electrode as anode. During the electrolysis, the investigated variables were: supporting electrolyte (Na2SO4, NaCl, NaNO3, and Na2CO3) at constant ionic strength (0.1 M), pH (3, 7, 10, and without control), and current density (5, 10 and 20 mA cm-2). The oxidation and mineralization of CEX were assessed by high performance liquid chromatography, coupled to mass spectrometry and total organic carbon. The oxidation process of CEX was dependent on the type of electrolyte and on pH of the solution due to the distinct oxidant species electrogenerated; however, the conversion of CEX and its hydroxylated intermediates to CO2 depends only on their diffusion to the surface of the BDD. In the final stages of electrolysis, an accumulation of recalcitrant oxamic and oxalic carboxylic acids, was detected. Finally, the growth inhibition assay with Escherichia coli cells showed that the toxicity of CEX solution decreased along the electrochemical treatment due to the rupture of the ß-lactam ring of the antibiotic.


Subject(s)
Cephalexin , Diamond/chemistry , Electrochemical Techniques/methods , Water Pollutants, Chemical , Water Purification/methods , Boron/chemistry , Carbon Dioxide/analysis , Carboxylic Acids/analysis , Cephalexin/analysis , Cephalexin/toxicity , Chromatography, High Pressure Liquid , Electrochemical Techniques/instrumentation , Electrodes , Electrolysis , Escherichia coli/drug effects , Oxidation-Reduction , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification/instrumentation
13.
Chemosphere ; 109: 187-94, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24613504

ABSTRACT

The electrooxidation of the dimethyl phthalate (DMP) ester was galvanostatically carried out in a filter-press reactor using a fluoride-doped lead dioxide (ß-PbO2,F) film electrodeposited on a Ti substrate. The variables investigated were the nature of the supporting electrolyte (NaCl and Na2SO4), pH (3, 7, and 10), current density (10, 20, 40, 60, and 80mAcm(-2)), and temperature (10, 20, 30, 40, and 50°C). The removal of DMP was monitored through high performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The best conditions were obtained using Na2SO4 and at low current densities, independent of the solution pH or temperature. These conditions led to the highest levels of current efficiencies and complete combustion. However, the TOC removal levels were low, due to the generation of highly oxidized intermediates, which was confirmed by the intermediates detected by HPLC.


Subject(s)
Electrochemical Techniques , Esters/metabolism , Fluorides/chemistry , Lead/chemistry , Oxides/chemistry , Phthalic Acids/chemistry , Titanium/chemistry , Chromatography, High Pressure Liquid , Electrodes , Electrolytes/chemistry , Esters/chemistry , Hydrogen-Ion Concentration , Hydroxyl Radical/chemistry , Oxidation-Reduction , Phthalic Acids/analysis , Sulfates/chemistry , Temperature
14.
J Hazard Mater ; 192(3): 1275-82, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21742436

ABSTRACT

Constant current electrolyses are carried out in a filter-press reactor using a boron-doped diamond (Nb/BDD) or a Ti-Pt/ß-PbO(2) anode, varying current density (j) and temperature. The degradation of the real textile effluent is followed by its decolorization and chemical oxygen demand (COD) abatement. The effect of adding NaCl (1.5 g L(-1)) on the degradation of the effluent is also investigated. The Nb/BDD anode yields much higher decolorization (attaining the DFZ limit) and COD-abatement rates than the Ti-Pt/ß-PbO(2) anode, at any experimental condition. The best conditions are j = 5 mA cm(-2) and 55 °C, for the system's optimized hydrodynamic conditions. The addition of chloride ions significantly increases the decolorization rate; thus a decrease of more than 90% of the effluent relative absorbance is attained using an applied electric charge per unit volume of the electrolyzed effluent (Q(ap)) of only about 2 kA h m(-3). Practically total abatement of the effluent COD is attained with the Nb/BDD anode using a Q(ap) value of only 7 kA h m(-3), with an energy consumption of about 30 kW h m(-3). This result allows to conclude that the Nb/BDD electrode might be an excellent option for the remediation of textile effluents.


Subject(s)
Boron/chemistry , Electrochemistry/methods , Lead/chemistry , Oxygen/chemistry , Water Pollutants, Chemical/analysis , Chlorides/chemistry , Diamond , Electrodes , Electrolysis , Filtration , Industrial Waste , Ions , Temperature , Textiles , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...