Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Molecules ; 28(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38067642

ABSTRACT

(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a "green" dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract's biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product.


Subject(s)
Antioxidants , Prunus dulcis , Antioxidants/pharmacology , Antioxidants/chemistry , Matrix Metalloproteinase 2 , Plant Extracts/pharmacology , Plant Extracts/chemistry , Dietary Supplements , Free Radicals/chemistry
2.
Nat Prod Res ; 37(24): 4261-4266, 2023.
Article in English | MEDLINE | ID: mdl-38042147

ABSTRACT

Stachys brachyclada de Noé ex Coss. (Lamiaceae) is a quite rare medicinal plant endemic to the Mediterranean basin. In this study, seven secondary metabolites from a methanol extract of its leaves have been isolated and identified by a combination of chromatographic and spectroscopic methods (1D and 2D NMR experiments and ESIMS analysis). They include one ethyl 4-hydroxybenzoate (1), three acylated flavone glycosides (2-4), one diapigenin derivative (5) and two flavone aglycones (6-7). Stachysetin (5) was found the major compound of the extract (74.0 mg/g of dry matter). Moreover, the produced extract showed the ability in inhibiting the α-glucosidase enzyme (IC50 = 13.7 µg/mL), in quenching the radical 1,1-diphenyl-2-picrylhydrazyl (EC50 = 74.6 µg/mL), and in reducing the intracellular oxidative stress level in Human Dermal Fibroblast (64% inhibition at 50 µg/mL).


Subject(s)
Flavones , Stachys , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Stachys/chemistry , Hypoglycemic Agents/pharmacology , Methanol , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry
3.
Gels ; 9(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37367162

ABSTRACT

The production of aerogels for different applications has been widely known, but the use of polysaccharide-based aerogels for pharmaceutical applications, specifically as drug carriers for wound healing, is being recently explored. The main focus of this work is the production and characterization of drug-loaded aerogel capsules through prilling in tandem with supercritical extraction. In particular, drug-loaded particles were produced by a recently developed inverse gelation method through prilling in a coaxial configuration. Particles were loaded with ketoprofen lysinate, which was used as a model drug. The core-shell particles manufactured by prilling were subjected to a supercritical drying process with CO2 that led to capsules formed by a wide hollow cavity and a tunable thin aerogel layer (40 µm) made of alginate, which presented good textural properties in terms of porosity (89.9% and 95.3%) and a surface area up to 417.0 m2/g. Such properties allowed the hollow aerogel particles to absorb a high amount of wound fluid moving very quickly (less than 30 s) into a conformable hydrogel in the wound cavity, prolonging drug release (till 72 h) due to the in situ formed hydrogel that acted as a barrier to drug diffusion.

4.
Life (Basel) ; 13(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37109533

ABSTRACT

The National Institute of Health has reported that approximately 80% of chronic infections are associated with biofilms, which are indicated as one of the main reasons for bacteria's resistance to antimicrobial agents. Several studies have revealed the role of N-acetylcysteine (NAC), in reducing biofilm formation induced by different microorganisms. A novel mixture made up of NAC and different natural ingredients (bromelain, ascorbic acid, Ribes nigrum, resveratrol, and pelargonium) has been developed in order to obtain a pool of antioxidants as an alternative strategy for biofilm reduction. The study has demonstrated that the mixture is able to significantly enhance NAC activity against different Gram-positive and Gram-negative bacteria. It has shown an increase in NAC permeation in vitro through an artificial fluid, moving from 2.5 to 8 µg/cm2 after 30 min and from 4.4 to 21.6 µg/cm2 after 180 min, and exhibiting a strongly fibrinolytic activity compared to the single components of the mixture. Moreover, this novel mixture has exhibited an antibiofilm activity against S aureus and the ability to reduce S. aureus growth by more than 20% in a time-killing assay, while on E. coli, and P. mirabilis, the growth was reduced by more than 80% compared to NAC. The flogomicina mixture has also been proven capable of reducing bacterial adhesion to abiotic surfaces of E.coli, by more than 11% concerning only the NAC. In combination with amoxicillin, it has been shown to significantly increase the drug's effectiveness after 14 days, offering a safe and natural way to reduce the daily dosage of antibiotics in prolonged therapies and consequently, reduce antibiotic resistance.

5.
Pharmaceutics ; 15(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678923

ABSTRACT

(1) Background: Eudraguard® Natural (EN) and Protect (EP) are polymers regulated for use in dietary supplements in the European Union and the United States to carry natural products, mask unpleasant smells and tastes, ameliorate product handling, and protect products from moisture, light, and oxidation. Moreover, EN and EP can control the release of encapsulated compounds. The aim of this work was the development, preparation, and control of Eudraguard® spray-drying microparticles to obtain powders with easy handling and a stable dietary supplement containing a polar functional extract (SOE) from Sorbus domestica L. leaves. (2) Methods: SOE was characterized using HPLC, NMR, FTIR, DSC, and SEM methods. Furthermore, the SOE's antioxidant/free radical scavenging activity, α-glucosidase inhibition, MTT assay effect on viability in normal cells, and shelf life were evaluated in both the extract and final formulations. (3) Results: The data suggested that SOE, rich in flavonoids, is a bioactive and safe extract; however, from a technological point of view, it was sticky, difficult to handle, and had low aqueous solubility. Despite the fact that EN and EP may undergo changes with spray-drying, they effectively produced easy-to-handle micro-powders with a controlled release profile. Although EN had a weaker capability to coat SOE than EP, EN acted as a substrate that was able to swell, drawing in water and improving the extract solubility and dissolution/release; however, EP was also able to carry the extract and provide SOE with controlled release. (4) Conclusion: Both Eudraguard® products were capable of carrying SOE and improving its antioxidant and α-glucosidase inhibition activities, as well as the extract stability and handling.

6.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203419

ABSTRACT

Colocasia esculenta (L.) Schott is a tuberous plant, also known as taro, employed as food worldwide for its renowned nutritional properties but also traditionally used in several countries for medical purposes. In this study, methanolic extracts were prepared from the corms and leaves of Colocasia, subsequently fractionated via molecular exclusion chromatography (RP-HPLC) and their anti-tumor activity assessed in an in vitro model of gastric adenocarcinoma (AGS cells). Vorm extract and isolated fractions II and III affected AGS cell vitality in a dose-dependent manner through the modulation of key proteins involved in cell proliferation, apoptosis, and cell cycle processes, such as caspase 3, cyclin A, cdk2, IkBα, and ERK. To identify bioactive molecules responsible for anti-tumoral activity fractions II and III were further purified via RP-HPLC and characterized via nuclear magnetic resonance (NMR) and electrospray mass spectrometry (ESI-MS) techniques. The procedure enabled the identification of ten compounds including lignans and neolignans, some isolated for the first time in taro, uncommon megastigmane derivatives, and a gallic acid derivative. However, none of the isolated constituents showed efficacy equivalent to that of the fractions and total extract. This suggests that the whole Colocasia phytocomplex has intriguing anti-tumor activity against gastric cancer.


Subject(s)
Adenocarcinoma , Colocasia , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Adenocarcinoma/drug therapy , Apoptosis , Plant Extracts/pharmacology
7.
Molecules ; 27(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35566146

ABSTRACT

Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.


Subject(s)
Drug Delivery Systems , Printing, Three-Dimensional , Drug Delivery Systems/methods , Drug Liberation , Humans , Pharmaceutical Preparations
8.
Drug Deliv Transl Res ; 12(8): 1974-1990, 2022 08.
Article in English | MEDLINE | ID: mdl-35194764

ABSTRACT

Cancer therapies started to take a big advantage from new nanomedicines on the market. Since then, research tried to better understand how to maximize efficacy while maintaining a high safety profile. Polyethylene glycol (PEG), the gold standard for nanomedicines coating design, is a winning choice to ensure a long circulation and colloidal stability, while in some cases, patients could develop PEG-directed immunoglobulins after the first administration. This lead to a phenomenon called accelerated blood clearance (ABC effect), and it is correlated with clinical failure because of the premature removal of the nanosystem from the circulation by immune mechanism. Therefore, alternatives to PEG need to be found. Here, looking at the backbone structural analogy, the hydrophilicity, flexibility, and its GRAS status, the natural polysaccharide inulin (INU) was investigated as PEG alternative. In particular, the first family of Inulin-g-poly-D,L-lactide amphiphilic copolymers (INU-PLAs) was synthesized. The new materials were fully characterized from the physicochemical point of view (solubility, 1D and 2D NMR, FT-IR, UV-Vis, GPC, DSC) and showed interesting hybrid properties compared to precursors. Moreover, their ability in forming stable colloids and to serve as a carrier for doxorubicin were investigated and compared with the already well-known and well-characterized PEGylated counterpart, polyethylene glycol-b-poly-D,L-lactide (PEG-PLA). This preliminary investigation showed INU-PLA to be able to assemble in nanostructures less than 200 nm in size and capable of loading doxorubicin with an encapsulation efficiency in the same order of magnitude of PEG-PLA analogues.


Subject(s)
Drug Carriers , Inulin , Dioxanes , Doxorubicin , Drug Carriers/chemistry , Humans , Polyesters/chemistry , Polyethylene Glycols/chemistry , Spectroscopy, Fourier Transform Infrared
9.
Pharmaceutics ; 13(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34683927

ABSTRACT

The study focused on the development and characterization of an O/W emulsion for skincare containing Castanea sativa spiny burs extract (CSE) as functional agent. The emulsion was stable and had suitable physicochemical and technological properties for dermal application and CSE showed no cytotoxicity in spontaneously immortalized keratinocytes (HaCaT) at active concentrations. A single-blind, placebo-controlled, monocentric study was designed to evaluate the skin tolerability and the skin performance of the CSE-loaded emulsion on healthy human volunteers. An improvement was observed in skin biomechanical properties such as hydration, skin elasticity and a reduction in the periorbital wrinkles in 30 days without altering the skin barrier function, sebum, pH, and erythema values. A significant skin moisturizing effect was detected while the skin barrier function was preserved. The selected natural ingredient combined with the designed formulation and the optimized preparation method has led to a final product that satisfies the physico-chemical and technological requirements underlying the safety of use and the formulative stability over time. With no negative skin reactions and highly significant effects on skin elasticity, wrinkles, and moisturization, the CSE-based emulsion achieved very satisfying outcomes representing a promising functional formulation for skin care.

10.
Pharmaceutics ; 12(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957562

ABSTRACT

BACKGROUND: Almond skins are rich in bioactive compounds that undergo oxidation/degradation phenomena and are poorly soluble in water, reducing in vivo absorption and bioavailability, factors that influence the pharmacological activity of an active product. We developed a dried acetonic almond skins extract/cyclodextrin complex to improve extract solubility, dissolution rate and biological activity. METHODS: A lyophilized acetonic almond skin extract was produced. To optimize complex formulation, phase solubility studies and complex characterization (absorption studies, differential scanning calorimetry (DSC), morphology, solubility studies) were performed. To evaluate a possible use in healthy products, tumor necrosis factor-α levels and reactive oxygen species release, as well as cicloxygenase-2 and inducible nitric oxide synthase expression in intestinal epithelial cells, were also evaluated. RESULTS: Phase solubility studies showed a Bs-type profile. A 1:1 dried acetonic almond skins extract/cyclodextrin ratio was able to improve extract water solubility and dissolution rate (100% in 45 min). The UV-Vis spectra of complex revealed a hypsochromic and hyperchromic effect, probably due to a partial inclusion of extract in cyclodextrin cavity through weak bonds, confirmed by DSC and morphology studies. The technological improvement in the extract characteristics also led to better biological activity. In fact, the complex effectively reduces tumor necrosis factor-α levels with respect to the pure extract and significantly inhibits the reactive oxygen species release, even if only at the lower concentration of 5 µg/mL. CONCLUSION: The complex was able to overcome solubility problems and could be used in inflammatory disease.

11.
Molecules ; 25(14)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664256

ABSTRACT

Polysaccharide-based hydrogel particles (PbHPs) are very promising carriers aiming to control and target the release of drugs with different physico-chemical properties. Such delivery systems can offer benefits through the proper encapsulation of many drugs (non-steroidal and steroidal anti-inflammatory drugs, antibiotics, etc) ensuring their proper release and targeting. This review discusses the different phases involved in the production of PbHPs in pharmaceutical technology, such as droplet formation (SOL phase), sol-gel transition of the droplets (GEL phase) and drying, as well as the different methods available for droplet production with a special focus on prilling technique. In addition, an overview of the various droplet gelation methods with particular emphasis on ionic cross-linking of several polysaccharides enabling the formation of particles with inner highly porous network or nanofibrillar structure is given. Moreover, a detailed survey of the different inner texture, in xerogels, cryogels or aerogels, each with specific arrangement and properties, which can be obtained with different drying methods, is presented. Various case studies are reported to highlight the most appropriate application of such systems in pharmaceutical field. We also describe the challenges to be faced for the breakthrough towards clinic studies and, finally, the market, focusing on the useful approach of safety-by-design (SbD).


Subject(s)
Hydrogels/chemistry , Polysaccharides/chemistry , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Porosity , Technology, Pharmaceutical/methods
12.
Eur J Pharm Biopharm ; 141: 100-110, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31112767

ABSTRACT

Strategies to load prednisolone or dexamethasone in preformed poly(L-lactic acid) (PLA) filaments and 3D printed scaffolds were explored as a way of personalizing the drug, the dose and the release profile for regenerative medicine purposes. Instead of starting from a PLA filament preloaded with a given content of drug, we explored two more versatile strategies. The first one involved the soaking of PLA filaments into a drug solution prepared in a solvent that reversibly swelled PLA; during 3D printing the melting of PLA contributed to the efficient integration (encapsulation) of the drug inside the printed strand. The second strategy consisted in first printing the 3D PLA scaffolds followed by soaking in a suitable drug solution in order to exploit the higher specific surface of the printed strands compared to the filament. Sustained release profiles were recorded when either prednisolone or dexamethasone were loaded in preformed PLA filaments, while rapid release was recorded for 3D PLA scaffolds loaded after printing. The combination of the two proposed methods reported here opened the possibility of creating concentration gradients of different drugs in the same scaffold exhibiting distinct release patterns. Namely, the strand core contained an active ingredient to be slowly released, while the surface was covered with other active ingredient that could be rapidly delivered. The feasibility of this approach was confirmed through dual loading of dexamethasone in the filament and of prednisolone on the preformed scaffold. Drug-loaded scaffolds were characterized in terms of printability, structural characteristics (DSC, XRD), mechanical properties, biodegradation, and ability to promote cell attachment and proliferation. Finally, anti-inflammatory response and osteoinductive properties were verified in cell cultures.


Subject(s)
Dexamethasone/chemistry , Polyesters/chemistry , Polymers/chemistry , Prednisolone/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Mice , Printing, Three-Dimensional , Regeneration/drug effects , Surface Properties/drug effects , Tissue Engineering/methods , Tissue Scaffolds
13.
Molecules ; 24(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010144

ABSTRACT

The choice of formulation is often of crucial importance in order to obtain a pharmaceutical product for the administration of poorly soluble drugs. Recently, a new water-soluble microparticulate powder form (MTE-mp) for the oral administration of a high functionality/low solubility silymarin rich milk thistle extract (MTE) has been developed. Findings showed that extract-loaded microparticles by spray-drying were produced with high and reproducible yields and encapsulation efficiency. The in vitro dissolution and permeation rates of silymarin were dramatically improved with respect to the raw material, and also enhanced the silymarin anti-inflammatory abilities. Given these successful results, the new MTE-mp delivery system has been proposed as an active ingredient for dermal applications. The aim of this research was the design and development of two topical formulations, hydrogel and emulgel (O/W emulsion), containing the MTE-mp delivery system or MTE raw extract. All the formulations were compared to each other in terms of handling and incorporation amount of the active ingredient during the productive process. Moreover, the addition to the emulgel of lecithin (L) as enhancer of permeation was tested. The MTE-mp ingredient that resulted was stable and more-easily incorporated both in hydrogel and emulgel than raw MTE extract, obtaining the best permeation profile for MTE-mp from emulgel with the addition of L. The obtained results confirm that the MTE-mp system could be used as a stable, water-soluble, and easy-handling functional ingredient, giving the opportunity to develop new strategies for MTE delivery in health products.


Subject(s)
Emulsions/chemistry , Plant Extracts/chemistry , Silybum marianum/chemistry , Silymarin/chemistry , Water/chemistry , Administration, Cutaneous , Drug Compounding , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Lecithins/chemistry
14.
Int J Pharm ; 561: 1-8, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30817983

ABSTRACT

Fused deposition modeling by 3D-printing is a rapid technique for the production of personalized drug dosage forms. One of the most delicate step of the whole process is the drug loading onto the thermoplastic polymer to obtain the drug-loaded filament used as feedstock for 3D FDM printers. With the aim of improving the drug loading, a systematic study on the influence of polymer size distribution on the quantity of drug able to adhere onto the polymer surface was conducted. Several solid mixtures were prepared, using five PVA batches (4000-5000 µm, 1000-2000 µm, 600-1000 µm, 250-600 µm, <250 µm) and Ciprofloxacin hydrochloride as active compound in different ratios. Operative specifics and printer's parameters were tuned for an optimal print of drug-loaded filaments into the desired dosage forms, i.e. cylindrical printlets, fully characterized in terms of homogeneity, process efficiency, physical properties, drug content and release kinetics. The PVA particle size affected the polymer ability to form homogeneous mixture with the drug and the efficiency of the extrusion process. In particular, finest PVA batches showed better processability and reduced the drug loss during the drug/polymer mixing and the extrusion process. Drug-loaded filaments with different drug concentrations were successfully printed and the obtained printlets dissolution profiles were almost superimposable, taking an important step for the future application of 3D-printing manufacturing process to obtain personalized galenic formulations.


Subject(s)
Ciprofloxacin/chemistry , Drug Compounding/methods , Particle Size , Polyvinyl Alcohol/chemistry , Printing, Three-Dimensional , Surface Properties , Tablets , Ciprofloxacin/analysis , Drug Liberation , Drug Stability , Tablets/chemistry
15.
Hypertension ; 73(2): 449-457, 2019 02.
Article in English | MEDLINE | ID: mdl-30595120

ABSTRACT

Considered as a superfood of the future, Spirulina platensis matrix has been extensively used because of its beneficial effect on the management of cardiovascular diseases. However, its nutraceutical properties, bioactive compounds, and molecular mechanisms are unknown. Here, we demonstrate that S platensis matrix processed in vitro by simulated gastrointestinal digestion induces direct endothelial nitric oxide (NO)-mediated vasorelaxation of resistance vessels in mice. To gain insight into the bioactive compounds responsible for this effect, we used a complex multistep peptidomic approach to fractionate the crude digest: of the 5 peptide fractions identified (A-E), only fraction E evoked vasorelaxation. High-resolution mass spectrometry-based screening revealed in E the presence of 4 main peptides (SP3-SP6 [spirulina peptides]), of which only SP6 (GIVAGDVTPI) exerted direct endothelium-dependent vasodilation of ex vivo vessels, an effect occurring via a PI3K (phosphoinositide-3-kinase)/AKT (serine/threonine kinase Akt) pathway converging on NO release. In vivo, administration of SP6 evoked a significant hemodynamic effect, reducing blood pressure, an action absent in eNOS (endothelial NO synthase)-deficient mice. Of note, although lower doses of SP6 had no hemodynamic effects, it still enhanced endothelial NO vasorelaxation. Finally, in an experimental model of arterial hypertension, SP6 exerted an antihypertensive effect, improving endothelial vasorelaxation associated with enhanced serum nitrite levels. Based on our results, this novel decameric peptide may extend the possible fields of application for spirulina-derived peptides and could be developed into a promising nonpharmacological approach for the containment of pathologies associated with vascular NO misregulation.


Subject(s)
Bacterial Proteins/pharmacology , Blood Pressure/drug effects , Nitric Oxide Synthase Type III/physiology , Peptides/pharmacology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Spirulina/chemistry , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Mice , Nitric Oxide/physiology , Vasodilation/drug effects
16.
Curr Med Chem ; 26(24): 4606-4630, 2019.
Article in English | MEDLINE | ID: mdl-30259806

ABSTRACT

BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.


Subject(s)
Biological Products/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Biological Products/therapeutic use , Citrus/chemistry , Citrus/metabolism , Corylus/chemistry , Corylus/metabolism , Humans , Isoflavones/chemistry , Isoflavones/therapeutic use , Metabolic Diseases/drug therapy , Neoplasms/drug therapy , Neoplasms/pathology , Polyphenols/chemistry , Polyphenols/therapeutic use , Glycine max/chemistry , Glycine max/metabolism
17.
Molecules ; 23(7)2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30011893

ABSTRACT

Many natural compounds having antioxidant and anti-inflammatory activity are a potential target for new therapies against chronic inflammatory syndromes. The oral administration of functional herbal supplements may become a prevention strategy or therapy adjuvant for susceptible patients. A case study is our milk thistle (Silybum marianum) extract rich in silymarin complex. A water-soluble microencapsulated powder system was developed by a spray drying technique to improve the poor silymarin bioactivity after oral administration. Sodium carboxymethylcellulose (NaCMC) was employed as coating/swelling polymer matrix and sodium lauryl sulfate (SLS) as the surfactant (1:1:0.05 w/w/w). A H2O/EtOH/acetone (50/15/35 v/v/v) solvent system was used as liquid feed. The microsystems were capable of improving the in vitro dissolution and permeation rates, suggesting an enhancement of bioactivity after oral administration. The microsystems protect the antioxidant activity of silymarin after harsh storage conditions period and do not affect the anti-inflammatory properties of the raw extract (efficient already at lower concentrations of 0.312 mg/mL) to reduce dendritic cells (DCs) inflammatory cytokine secretion after lipopolysaccharide administration. This approach allows managing particle size, surface properties and release of bioactive agents improving the bioactivity of a herbal supplement and is also possibly applicable to many other similar natural products.


Subject(s)
Carboxymethylcellulose Sodium , Dendritic Cells/metabolism , Plant Extracts , Silybum marianum/chemistry , Silymarin , Animals , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Dendritic Cells/cytology , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology , Powders , Silymarin/chemistry , Silymarin/pharmacology
18.
Molecules ; 23(5)2018 05 11.
Article in English | MEDLINE | ID: mdl-29751637

ABSTRACT

Arthrospira platensis, better known as Spirulina, is one of the most important microalgae species. This cyanobacterium possesses a rich metabolite pattern, including high amounts of natural pigments. In this study, we applied a combined strategy based on Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Ultra High-Performance Liquid Chromatography (UHPLC) for the qualitative/quantitative characterization of Spirulina pigments in three different commercial dietary supplements. FT-ICR was employed to elucidate the qualitative profile of Spirulina pigments, in both direct infusion mode (DIMS) and coupled to UHPLC. DIMS showed to be a very fast (4 min) and accurate (mass accuracy ≤ 0.01 ppm) tool. 51 pigments were tentatively identified. The profile revealed different classes, such as carotenes, xanthophylls and chlorophylls. Moreover, the antioxidant evaluation of the major compounds was assessed by pre-column reaction with the DPPH radical followed by fast UHPLC-PDA separation, highlighting the contribution of single analytes to the antioxidant potential of the entire pigment fraction. ß-carotene, diadinoxanthin and diatoxanthin showed the highest scavenging activity. The method took 40 min per sample, comprising reaction. This strategy could represent a valid tool for the fast and comprehensive characterization of Spirulina pigments in dietary supplements, as well as in other microalgae-based products.


Subject(s)
Antioxidants/chemistry , Dietary Supplements , Pigments, Biological/chemistry , Spirulina/chemistry , Chromatography, High Pressure Liquid , Free Radicals/antagonists & inhibitors , Inhibitory Concentration 50 , Mass Spectrometry
19.
Fitoterapia ; 119: 32-39, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28363507

ABSTRACT

The phytochemical profile of decoction and infusion, obtained from the dried leaves of M. nivellei, consumed as tea in Saharan region, was characterized by UHPLC-PDA-HRMS. Fourteen compounds were characterized and, to confirm the proposed structures a preparative procedure followed by NMR spectroscopy was applied. Compound 3 (2-hydroxy-1,8-cineole disaccharide) was a never reported whereas a bicyclic monoterpenoid glucoside (2), two ionol glucosides (1 and 12), a tri-galloylquinic acid (4), two flavonol glycosides (5 and 9), and a tetra-galloylglucose (7), were reported in Myrtus spp. for the first time. Five flavonol O-glycosides (6, 8, 10-11, and 14) togheter a flavonol (13) were also identified. Quantitative determination of phenolic constituents from decoction and infusion has been performed by HPLC-UV-PDA. The phenolic content was found to be 150.5 and 102.6mg/g in decoction and infusion corresponding to 73.8 and 23.6mg/100mL of a single tea cup, respectively. Myricetin 3-O-ß-d-(6″-galloyl)glucopyranoside (5), isomyricitrin (6) and myricitrin (8) were the compounds present in the highest concentration. The free-radical scavenging activities of teas and isolated compounds was measured by the DPPH assay and compared with the values of other commonly used herbal teas (green and black teas). Decoction displayed higher potency in scavenging free-radicals than the infusion and green and black teas.


Subject(s)
Antioxidants/chemistry , Cyclohexanols/chemistry , Monoterpenes/chemistry , Myrtus/chemistry , Teas, Herbal , Antioxidants/isolation & purification , Cyclohexanols/isolation & purification , Eucalyptol , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonols/chemistry , Flavonols/isolation & purification , Glucosides/chemistry , Glucosides/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Molecular Structure , Monoterpenes/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Terpenes/chemistry , Terpenes/isolation & purification
20.
Carbohydr Polym ; 165: 22-29, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28363543

ABSTRACT

In this study, hypromellose acetate succinate (HPMCAS) stable submicronic particles loaded with a soy isoflavones extract have been obtained by nano spray drying technology. HPMCAS has been used as excipient able to increase both stability and supersaturation levels of the active ingredients hence able to enhance skin penetration performance of genistein and daidzein. The influence of polymer/extract ratio as other process variables, on particle size, morphology and permeation performance, have been investigated. Particles in submicronic range (mean size around 550nm) and narrow size distribution with high encapsulation efficiency (up to 86%) were obtained. HPMCAS was able to improve amorphization of genistein during the atomization process and avoid recrystallization during storage, even in harsh environmental condition. Moreover, the enhanced affinity of the optimized formulations with aqueous media, strongly increased isoflavones penetration through membrane with diffusive properties well-correlated to human skin, up to 10-fold higher than pure soy isoflavones extract raw material.


Subject(s)
Glycine max/chemistry , Hypromellose Derivatives/chemistry , Isoflavones/chemistry , Skin Absorption , Acetates/chemistry , Genistein , Humans , Succinates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...