Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Drug Discov Today ; 29(8): 104066, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908546

ABSTRACT

Circular RNAs (circRNAs) are a type of noncoding RNA that are formed by back-splicing from eukaryotic protein-coding genes. The most frequently reported and well-characterized function of circRNAs is their ability to act as molecular decoys, most often as miRNA and protein sponges. However, the functions of most circRNAs still need to be better understood. To more fully understand the biological relevance of validated circRNAs, knockdown functional analyses can be performed using antisense oligonucleotides, RNA interference (RNAi) experiments (e.g., targeting back-splicing junction sites), the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas)-9 system (e.g., generating circRNA-specific knockouts), and CRISPR-Cas13 technology to effectively target circRNAs without affecting host genes. In this review, I summarize the feasibility and effectiveness of circRNA knockdown through antisense strategies for investigating the biological roles of circRNAs in cultured cells and animal models.

2.
Trends Biotechnol ; 42(6): 665-670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38129214

ABSTRACT

Mexico has the in-house technical and regulatory capacity to undertake human genome editing (HGE) governance. However, its regulatory framework must be reformed to be more targeted and govern the application of any emerging HGE technologies, leaving no room for unethical or unsafe practices for reproductive purposes.


Subject(s)
Gene Editing , Genome, Human , Humans , Mexico , Gene Editing/legislation & jurisprudence , Gene Editing/ethics , Gene Editing/methods , Genome, Human/genetics
3.
Drug Discov Today ; 28(11): 103793, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37797813

ABSTRACT

Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.


Subject(s)
CRISPR-Cas Systems , Transcriptome , Humans , CRISPR-Cas Systems/genetics , Gene Editing , Genome/genetics , Bacteria/genetics
4.
Hum Cell ; 36(6): 2276-2277, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37578573
6.
8.
Acta Neurol Scand ; 146(5): 512-524, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36000352

ABSTRACT

OBJECTIVES: This study aimed to evaluate whether the expression of circulating dystromiRs and a group of oxidative stress-related (OS-R) miRNAs is associated with muscle injury and circulating metabolic parameters in Duchenne muscular dystrophy (DMD) patients. METHODS: Twenty-four DMD patients were included in this cross-sectional study. Clinical scales to evaluate muscle injury (Vignos, GMFCS, Brooke, and Medical Research Council), enzymatic muscle injury parameters (CPK, ALT, and AST), anthropometry, metabolic indicators, physical activity, serum dystromiRs (miR-1-3p, miR-133a-3p, and miR-206), and OS-R miRNAs (miR-21-5p, miR-31-5p, miR-128-3p, and miR-144-3p) levels were measured in ambulatory and non-ambulatory DMD patients. RESULTS: DystromiRs (except miR-1-3p) and miRNAs OS-R levels were lower (p-value <.05) in the non-ambulatory group than the ambulatory group. The expression of those miRNAs correlated with Vignos scale score (For instance, rho = -0.567, p-value <0.05 for miR-21-5p) and with other scales scores of muscle function and strength. CPK, AST, and ALT concentration correlated with expression of all miRNAs (For instance, rho = 0.741, p-value <.05 between miR-206 level and AST concentration). MiR-21-5p level correlated with glucose concentration (rho = -0.369, p-value = .038), and the miR-1-3p level correlated with insulin concentration (rho = 0.343, p-value = .05). CONCLUSIONS: Non-ambulatory DMD patients have lower circulating dystromiRs and OS-R miRNAs levels than ambulatory DMD patients. The progressive muscle injury is associated with a decrease in the expression of those miRNAs, evidencing DMD progress. These findings add new information about the natural history of DMD.


Subject(s)
Circulating MicroRNA , Insulins , MicroRNAs , Muscular Dystrophy, Duchenne , Biomarkers , Cross-Sectional Studies , Glucose , Humans , Muscles/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism
9.
Cells ; 10(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34359825

ABSTRACT

MicroRNAs (miRNAs) have a prominent role in virtually every aspect of cell biology. Due to the small size of mature miRNAs, the high degree of similarity between miRNA family members, and the low abundance of miRNAs in body fluids, miRNA expression profiling is technically challenging. Biosensors based on electrochemical detection for nucleic acids are a novel category of inexpensive and very sensitive diagnostic tools. On the other hand, after recognizing the target sequence, specific CRISPR-associated proteins, including orthologues of Cas12, Cas13, and Cas14, exhibit collateral nonspecific catalytic activities that can be employed for specific and ultrasensitive nucleic acid detection from clinically relevant samples. Recently, several platforms have been developed, connecting the benefits of enzyme-assisted signal amplification and enzyme-free amplification biosensing technologies with CRISPR-based approaches for miRNA detection. Together, they provide high sensitivity, precision, and fewer limitations in diagnosis through efficient sensors at a low cost and a simple miniaturized readout. This review provides an overview of several CRISPR-based biosensing platforms that have been developed and successfully applied for ultrasensitive and specific miRNA detection.


Subject(s)
CRISPR-Cas Systems/genetics , MicroRNAs/analysis , Animals , Biosensing Techniques , Colorimetry , Electrochemistry , Genetic Engineering , Humans , MicroRNAs/genetics
10.
Mol Genet Metab ; 134(1-2): 77-86, 2021.
Article in English | MEDLINE | ID: mdl-34391646

ABSTRACT

CRISPR/Cas9-based technology has revolutionized biomedical research by providing a high-fidelity gene-editing method, foreshadowing a significant impact on the therapeutics of many human genetic disorders previously considered untreatable. However, off-target events represent a critical hurdle before genome editing can be fully established in clinical practice. This mini-review recapitulates some recent advances for detecting and overcoming off-target effects mediated by the CRISPR/Cas9 system that could increase the likelihood of clinical success of the CRISPR-based approaches.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Gene Editing/standards , Humans
11.
Biomed Pharmacother ; 142: 111953, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34343897

ABSTRACT

Currently, there are over 230 different COVID-19 vaccines under development around the world. At least three decades of scientific development in RNA biology, immunology, structural biology, genetic engineering, chemical modification, and nanoparticle technologies allowed the accelerated development of fully synthetic messenger RNA (mRNA)-based vaccines within less than a year since the first report of a SARS-CoV-2 infection. mRNA-based vaccines have been shown to elicit broadly protective immune responses, with the added advantage of being amenable to rapid and flexible manufacturing processes. This review recapitulates current advances in engineering the first two SARS-CoV-2-spike-encoding nucleoside-modified mRNA vaccines, highlighting the strategies followed to potentiate their effectiveness and safety, thus facilitating an agile response to the current COVID-19 pandemic.


Subject(s)
Biomedical Engineering , COVID-19 Vaccines , COVID-19 , Drug Development/methods , Drug Discovery/methods , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Biomedical Engineering/methods , Biomedical Engineering/trends , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/classification , COVID-19 Vaccines/pharmacology , Drug Delivery Systems/methods , Humans , Immunogenicity, Vaccine , Liposomes/pharmacology , Nanoparticles , Nucleosides/pharmacology , Nucleosides/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/pharmacology
12.
Drug Discov Today ; 26(8): 2025-2035, 2021 08.
Article in English | MEDLINE | ID: mdl-34147688

ABSTRACT

The limitations of conventional diagnostic procedures, such as real-time PCR-based methods and serological tests, have led the scientific community to innovate alternative nucleic acid detection approaches for SARS-CoV-2 RNA, thereby addressing the dire need for increased testing. Such approaches aim to provide rapid, accurate, cost-effective, sensitive, and high-throughput detection of SARS-CoV-2 RNA, on multiple specimen types, and without specialized equipment and expertise. The CRISPR-Cas13 system functions as a sequence-specific RNA-sensing tool that has recently been harnessed to develop simplified and flexible testing formats. This review recapitulates technical advances in the most recent CRISPR-Cas13-based methods for SARS-CoV-2/COVID-19 diagnosis. The challenges and opportunities for implementing mass testing using these novel CRISPR-Cas13 platforms are critically analyzed.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , CRISPR-Cas Systems/physiology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , CRISPR-Associated Proteins , Humans , Point-of-Care Testing/trends , RNA Cleavage
13.
Genes (Basel) ; 12(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33916492

ABSTRACT

The genome of the SARS-CoV-2 virus, the causal agent of the COVID-19 pandemic, has diverged due to multiple mutations since its emergence as a human pathogen in December 2019. Some mutations have defined several SARS-CoV-2 clades that seem to behave differently in terms of regional distribution and other biological features. Next-generation sequencing (NGS) approaches are used to classify the sequence variants in viruses from individual human patients. However, the cost and relative scarcity of NGS equipment and expertise in developing countries prevent studies aimed to associate specific clades and variants to clinical features and outcomes in such territories. As of March 2021, the GR clade and its derivatives, including the B.1.1.7 and B.1.1.28 variants, predominate worldwide. We implemented the post-PCR small-amplicon high-resolution melting analysis to genotype SARS-CoV-2 viruses isolated from the saliva of individual patients. This procedure was able to clearly distinguish two groups of samples of SARS-CoV-2-positive samples predicted, according to their melting profiles, to contain GR and non-GR viruses. This grouping of the samples was validated by means of amplification-refractory mutation system (ARMS) assay as well as Sanger sequencing.


Subject(s)
COVID-19/virology , Genotyping Techniques/methods , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation , Nucleic Acid Denaturation , RNA, Viral/isolation & purification
15.
Clin Rheumatol ; 40(3): 929-939, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32809147

ABSTRACT

OBJECTIVE: The aim of this study was to examine the association of three TNFSF4 single nucleotide variants (SNVs) with systemic lupus erythematosus (SLE) susceptibility in Mexican patients. METHODS: Genotypes of the TNFSF4 rs1234315T/C, rs2205960G/T, and rs704840T/G SNVs were determined using a TaqMan assay. In our study, we included 395 patients with SLE and 500 controls. RESULTS: Our information shows a significant difference in the allelic and genotypic frequency of the three TNFSF4 SNVs between cases and controls. Thus, our data showed an association between TNFSF4 rs1234315T/C (T vs. C, OR 1.40, p = 0.00087), rs2205960G/T (G vs. T, OR 1.32, p = 0.0037), and rs704840T/G (T vs. G, OR 1.41, p = 0.0003) and SLE susceptibility in Mexican subjects. Besides, we conducted a meta-analysis to determine the role of TNFSF4 rs2205960G/T and SLE susceptibility; our results showed that this variant is a risk factor for SLE in Latin Americans and Asians. CONCLUSION: Our results show that TNFSF4 rs1234315T/C, rs2205960G/T, and rs704840T/G are risk factors to SLE in Mexicans. This is the first study to document an association between TNFSF4 rs704840T/G and SLE in a Latin American population. In addition, our meta-analysis showed that TNFSF4 rs2205960G/T is a risk factor for Asians and Latin Americans. Key Point • The TNFSF4 rs1234315T/C, rs2205960G/T, and rs704849T/G SNVs are risk factors to SLE in patients from Mexico.


Subject(s)
Genetic Predisposition to Disease , Lupus Erythematosus, Systemic , Genotype , Humans , Latin America/epidemiology , Lupus Erythematosus, Systemic/genetics , Mexico , OX40 Ligand/genetics , Polymorphism, Single Nucleotide , Risk Factors
16.
Gac. méd. Méx ; 156(6): 533-536, nov.-dic. 2020. tab
Article in Spanish | LILACS | ID: biblio-1249963

ABSTRACT

Resumen La revisión por pares tradicional atraviesa por crecientes cuestionamientos, dado el aumento en el fraude científico detectado y la crisis de replicación que recientemente se ha presentado en la investigación biomédica. Investigadores, instituciones académicas y agencias de financiamiento activamente promueven el análisis del registro científico y se han desarrollado múltiples herramientas para lograrlo. Diferentes revistas biomédicas se fundaron con la revisión por pares pospublicación como característica; existen varias plataformas digitales que hacen posible este proceso. Asimismo, cada vez hay más revistas biomédicas que permiten comentar artículos publicados en sus sitios web, lo cual también es posible en repositorios de preimpresiones. Sumado a esto, las casas editoriales y los investigadores están usando ampliamente las redes sociales para la difusión y discusión de artículos, lo cual a veces culmina en refutaciones y retracciones.


Abstract Traditional peer review is undergoing increasing questioning, given the increase in scientific fraud detected and the replication crisis biomedical research is currently going through. Researchers, academic institutions, and research funding agencies actively promote scientific record analysis, and multiple tools have been developed to achieve this. Different biomedical journals were founded with post-publication peer review as a feature, and there are several digital platforms that make this process possible. In addition, an increasing number biomedical journals allow commenting on articles published on their websites, which is also possible in preprint repositories. Moreover, publishing houses and researchers are largely using social networks for the dissemination and discussion of articles, which sometimes culminates in refutations and retractions.


Subject(s)
Humans , Publishing/standards , Peer Review, Research/methods , Quality Control , Time Factors , Scientific Misconduct/statistics & numerical data
17.
Eur J Pharmacol ; 883: 173252, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32534078

ABSTRACT

Type 2 diabetes (T2D) is a metabolic disease characterized by defects in glycemia regulation. This disease is associated with alterations in insulin action and lipid metabolism, generating hyperglycemia and dyslipidemias. Currently, it is necessary to develop new or known drugs that promote the sensitization of insulin action. Thus, activation of peroxisome proliferator-activated receptors (PPARs) is probably the key to doing this. PPARs participate in maintaining an energetic balance between storage and the expenditure of energy. The activation of PPARγ produces the storage of energy, mainly as glycogen and fat. Meanwhile, PPARα activation promotes lipid degradation. Oleanolic acid (OA), a pentacyclic triterpenoid of numerous edible and medicinal plants, decreases hyperglycemia and lipid accumulation. However, the effects on PPARs and their regulated genes are unknown. Our aim was to determine the effects of OA on PPAR γ/α expression and their regulated genes (adiponectin, type 4 glucose transporter, fatty acid transport protein, and long-chain acyl-CoA synthetase) in C2C12 myoblasts by RT-PCR, Western blot, GLUT-4 translocation, and lipid storage in 3T3-L1 adipocytes. In C2C12 myoblasts, OA increased the expression of mRNA in both PPARγ/α and their regulated genes; also, PPARγ, GLUT-4, and FATP-1 protein expression increased, as well as GLUT-4 translocation. In 3T3-L1, OA increased the expression of mRNA in both PPARγ/α and maintained lipid storage unchanged. In conclusion, OA exhibited a dual action on PPARγ/α, which might explain in part its antihyperglycemic effect. This compound represents an alternative for designing novel therapeutic strategies in the control of T2D.


Subject(s)
Adipocytes/drug effects , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Myoblasts, Skeletal/drug effects , Oleanolic Acid/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Gene Expression Regulation , Glucose Transporter Type 4/genetics , Lipid Metabolism/drug effects , Mice , Myoblasts, Skeletal/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Protein Transport , Signal Transduction
18.
Mol Ther Nucleic Acids ; 19: 1065-1072, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32044725

ABSTRACT

One of the most prevalent forms of post-transcriptional RNA modification is the conversion of adenosine-to-inosine (A-to-I), mediated by adenosine deaminase acting on RNA (ADAR) enzymes. The advent of the CRISPR/Cas systems inspires researchers to work actively in the engineering of programmable RNA-guided machines for basic research and biomedical applications. In this regard, CIRTS (CRISPR-Cas-Inspired RNA Targeting System), RESCUE (RNA Editing for Specific C to U Exchange), RESTORE (Recruiting Endogenous ADAR to Specific Transcripts for Oligonucleotide-mediated RNA Editing), and LEAPER (Leveraging Endogenous ADAR for Programmable Editing of RNA) are innovative RNA base-editing platforms that have recently been engineered to perform programmable base conversions on target RNAs mediated by ADAR enzymes in mammalian cells. Thus, these four currently characterized RNA-editing systems constitute novel molecular tools with compelling programmability, specificity, and efficiency that show us some creative ways to take advantage of the engineered deaminases for precise base editing. Moreover, the advanced engineering of these systems permits editing of full-length transcripts containing disease-causing point mutations without the loss of genomic information, providing an attractive alternative for in vivo research and in the therapeutic setting if the challenges encountered in off-target edits and delivery are appropriately addressed. Here, I present an analytical approach of the current status and rapid progress of the novel ADAR-mediated RNA-editing systems when highlighting the qualities of each new RNA-editing platform and how these RNA-targeting strategies could be used to recruit human ADARs on endogenous transcripts, not only for our understanding of RNA-modification-mediated regulation of gene expression but also for editing clinically relevant mutations in a programmable and straightforward manner.

19.
J Gene Med ; 22(5): e3165, 2020 05.
Article in English | MEDLINE | ID: mdl-31984575

ABSTRACT

BACKGROUND: Focal dermal hypoplasia (FDH) is rare X-linked dominant disease characterized by atrophy and linear pigmentation of the skin, split hand/foot deformities and ocular anomalies. FDH is caused by mutations of the Porcupine (PORCN) gene, which encodes an enzyme that catalyzes the palmitoylation of Wnt ligands required for their secretion. High resolution melting analysis (HRM) is a technique that allows rapid, labor-efficient, low-cost detection of genomic variants. In the present study, we report the successful implementation of HRM in the molecular diagnosis of FDH. METHODS: Polymerase chain reaction and HRM assays were designed and optimized for each of the coding exons of the PORCN gene, processing genomic DNA samples form a non-affected control and a patient complying with the FDH diagnostic criteria. The causal mutation was characterized by Sanger sequencing from an amplicon showing a HRM trace suggesting heterozygous variation and was validated using an amplification-refractory mutation system (ARMS) assay. RESULTS: The melting profiles suggested the presence of a variant in the patient within exon 1. Sanger sequencing revealed a previously unknown C to T transition replacing a glutamine codon for a premature stop codon at position 28, which was validated using ARMS. CONCLUSIONS: Next-generation sequencing facilitates the molecular diagnosis of monogenic disorders; however, its cost-benefit ratio is not optimal when a single, small or medium size causal gene is already identified and the clinical diagnostic presumption is strong. Under those conditions, as it is the case for FDH, HRM represents a cost- and labor-effective approach.


Subject(s)
Acyltransferases/genetics , Exons/genetics , Focal Dermal Hypoplasia/diagnosis , Focal Dermal Hypoplasia/genetics , Membrane Proteins/genetics , Nucleic Acid Denaturation/genetics , Amino Acid Sequence , Codon, Nonsense , Female , Focal Dermal Hypoplasia/physiopathology , Heterozygote , Humans , Infant , Mutation , Phylogeny , Polymerase Chain Reaction/methods , Sequence Alignment
20.
Gac Med Mex ; 156(6): 523-526, 2020.
Article in English | MEDLINE | ID: mdl-33877104

ABSTRACT

Traditional peer review is undergoing increasing questioning, given the increase in scientific fraud detected and the replication crisis biomedical research is currently going through. Researchers, academic institutions, and research funding agencies actively promote scientific record analysis, and multiple tools have been developed to achieve this. Different biomedical journals were founded with post-publication peer review as a feature, and there are several digital platforms that make this process possible. In addition, an increasing number biomedical journals allow commenting on articles published on their websites, which is also possible in preprint repositories. Moreover, publishing houses and researchers are largely using social networks for the dissemination and discussion of articles, which sometimes culminates in refutations and retractions.La revisión por pares tradicional atraviesa por crecientes cuestionamientos, dado el aumento en el fraude científico detectado y la crisis de replicación que recientemente se ha presentado en la investigación biomédica. Investigadores, instituciones académicas y agencias de financiamiento activamente promueven el análisis del registro científico y se han desarrollado múltiples herramientas para lograrlo. Diferentes revistas biomédicas se fundaron con la revisión por pares pospublicación como característica; existen varias plataformas digitales que hacen posible este proceso. Asimismo, cada vez hay más revistas biomédicas que permiten comentar artículos publicados en sus sitios web, lo cual también es posible en repositorios de preimpresiones. Sumado a esto, las casas editoriales y los investigadores están usando ampliamente las redes sociales para la difusión y discusión de artículos, lo cual a veces culmina en refutaciones y retracciones.


Subject(s)
Peer Review, Research/methods , Publishing/standards , Humans , Quality Control , Scientific Misconduct/statistics & numerical data , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...