Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(18): 27452-27464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512576

ABSTRACT

Under the present investigation, the submerged plant Potamogeton pusillus has been tested for the removal of lead (Pb) and cadmium (Cd). P. pusillus removal efficiency and accumulation capacity were examined in separated Pb and Cd solutions, at 0.5, 1.0, and 2 mg L-1, and in solutions where both metals were present at the same concentration (0.5, 1.0, and 2 mg L-1), under laboratory conditions for 3, 7, and 10 days. Also, we examined the removal efficiency and accumulation capacity when a set of plants were exposed to 0.5 mg L-1 of Pb (or Cd) and increasing concentrations (0.5, 1, and 2 mg L-1) of Cd (or Pb) for 10 days. The effect of Cd and Pb was assessed by measuring changes in the chlorophylls, carotenoids, and malondialdehyde contents. Results showed that P. pusillus could accumulate Cd and Pb from individual solutions. Roots and leaves accumulated the highest amount of Cd and Pb followed by the stems. Some phytotoxic effects were observed, especially at individual Cd exposures, but these effects were not observed in the two-metal system. The removal and accumulation of Pb by P. pusillus were significantly enhanced in the presence of Cd under certain conditions, presenting a good alternative for the removal of these metals from polluted aquifers. To the extent of our knowledge, this is the first report on both enhanced phytoextraction of Pb in the presence of Cd and bioaccumulation of these heavy metals by P. pusillus.


Subject(s)
Bioaccumulation , Biodegradation, Environmental , Cadmium , Lead , Potamogetonaceae , Cadmium/metabolism , Lead/metabolism , Potamogetonaceae/metabolism , Water Pollutants, Chemical/metabolism
2.
Integr Environ Assess Manag ; 19(3): 717-725, 2023 May.
Article in English | MEDLINE | ID: mdl-35661581

ABSTRACT

Sediment enrichment with biochar, a high-carbon material produced by the pyrolysis of biomass, is a promising remediation strategy for metal pollution. The metal immobilization capacity of biochar can be explained by its porous structure, surface functional groups, pH greater than 7, and cation exchange capacity. However, the effectiveness in reducing metal bioavailability depends on the physicochemical characteristics of the biochar, which are strongly associated with the process conditions and feedstock. The aims of this study were to analyze the effect of pyrolysis temperature on the properties of biochars derived from different locally available biomass materials, biochar potential to adsorb Cr, and biochar phytotoxicity in seed germination. Poultry litter (PL), maize straw, the macrophyte Juncus imbricatus, and phytoremediation wastes from the macrophyte previously exposed to Cr were pyrolyzed into biochar at 300 °C and 600 °C. The properties and capacity of biochar to remove Cr from the aqueous phase were determined. Finally, a germination assay was performed to evaluate biochar phytotoxicity. Biochar yield decreased with increasing pyrolysis temperature, whereas ash content and pH increased. Biochar C content and total surface area increased with temperature. Biochar Cr removal capacity improved under the highest temperature, reaching a maximum sorption value of 13.7 mg g-1 Cr at 300 °C in PL biochar and of 42.6 mg g-1 Cr at 600 °C in J. imbricatus biochar. Despite the comparatively high metal content in the biochar, the germination indices of all biochars produced at 600 °C were higher than 80%, suggesting no phytotoxicity. Considering the metal sorption capacity and the phytotoxicity, biochars produced from J. imbricatus, PL, and phytoremediation residues at 600 °C were suitable for use in the removal of Cr from water. Integr Environ Assess Manag 2023;19:717-725. © 2022 SETAC.


Subject(s)
Chromium , Pyrolysis , Temperature , Charcoal/chemistry , Water
3.
Bull Environ Contam Toxicol ; 102(1): 105-114, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30446782

ABSTRACT

The temporal variation of As, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in surface waters and sediments, and trace element accumulation and physiological changes in the macrophytes Stuckenia filiformis and Potamogeton pusillus, were estimated in the Ctalamochita River, Argentina, both upstream and downstream of Río Tercero. Chromium, Fe, Pb and Zn in surface water were higher at the downstream site, while Cu and Mn were higher upstream. Chromium, Mn and Zn in S. filiformis correlated with concentrations observed in sediments, whereas only Zn did in water. In P. pusillus, As, Co, Cr, Ni, Pb and Zn correlated with concentrations in sediments. P. pusillus revealed greater variations in the photosynthetic pigments and malondialdehyde content in the site downstream of the city than those observed in S. filiformis. Therefore, P. pusillus has a greater potential use in monitoring studies in aquatic environments with ecological risk than S. filiformis.


Subject(s)
Environmental Monitoring , Potamogetonaceae/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Argentina , Chromium , Cities , Ecology , Metals, Heavy/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...