Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 99: 87-94, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27521227

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury.


Subject(s)
Epithelial Cells/drug effects , Kidney Tubules/drug effects , Shiga Toxin 2/toxicity , Apoptosis , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Epithelial Cells/physiology , Humans , Kidney Tubules/physiology , Organ Culture Techniques
3.
J Nephrol ; 29(6): 791-797, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26842625

ABSTRACT

BACKGROUND: Proteinuria suggests kidney involvement in Fabry disease. We assessed podocyturia, an early biomarker, in controls and patients with and without enzyme therapy, correlating podocyturia with proteinuria and renal function. METHODS: Cross-sectional study (n = 67): controls (Group 1, n = 30) vs. Fabry disease (Group 2, n = 37) subdivided into untreated (2A, n = 19) and treated (2B, n = 18). Variables evaluated: age, gender, creatinine, CKD-EPI, proteinuria, podocyte count/10 20× microscopy power fields, podocytes/100 ml urine, podocytes/g creatininuria (results expressed as median and range). RESULTS: Group 1 vs. 2 did not differ concerning age, gender and CKD-EPI, but differed regarding proteinuria and podocyturia. Group 2A vs. 2B: age: 29 (18-74) vs. 43 (18-65) years (p = ns); gender: males n = 3 (16 %) vs. n = 9 (50 %). Proteinuria was significantly higher in Fabry treated patients, while CKD-EPI and podocyturia were significantly elevated in untreated individuals. Significant correlations: group 2A: age-proteinuria, ρ = 0.62 (p = 0.0044); age-CKD-EPI, ρ = -0.84 (p < 0.0001); podocyturia-podocytes/100 ml urine, ρ = 0.99 (p = 0.0001); podocyturia-podocytes/g creatininuria ρ = 0.86 (p = 0.0003), podocytes/100 ml urine-podocytes/g urinary creatinine, ρ = 0.84 (p = 0.0004); proteinuria-CKD-EPI, ρ = -0.68 (p = 0.0013). Group 2B: podocyturia-podocytes/100 ml urine, ρ = 0.88 (p < 0.0001); podocyturia-podocytes/g creatininuria, ρ = 0.84 (p < 0.0001); podocytes/100 ml urine-podocytes/g creatininuria, ρ = 0.94 (p < 0.0001); CKD-EPI-proteinuria, ρ = -0.66 (p = 0.0028). CONCLUSIONS: Patients with Fabry disease display heavy podocyturia; those untreated present significantly higher podocyturia, lower proteinuria and better renal function than those who are treated, suggesting that therapy may be started at advanced stages. Podocyturia may antedate proteinuria, and enzyme therapy may protect against podocyte loss.


Subject(s)
Enzyme Replacement Therapy , Fabry Disease/drug therapy , Isoenzymes/therapeutic use , Podocytes/drug effects , Renal Insufficiency, Chronic/prevention & control , Urine/cytology , alpha-Galactosidase/therapeutic use , Adolescent , Adult , Aged , Biomarkers/urine , Case-Control Studies , Creatinine/urine , Cross-Sectional Studies , Fabry Disease/complications , Fabry Disease/pathology , Female , Humans , Male , Middle Aged , Podocytes/pathology , Proteinuria/etiology , Proteinuria/pathology , Proteinuria/prevention & control , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/urine , Risk Factors , Time Factors , Treatment Outcome , Urinalysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...