Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Mol Oncol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790138

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.

2.
ACS Synth Biol ; 13(3): 901-912, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38445989

ABSTRACT

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.


Subject(s)
Anabaena , Cyanobacteria , Humans , RNA, Guide, CRISPR-Cas Systems , RNA , Plasmids/genetics , Anabaena/genetics , Cyanobacteria/genetics , DNA , Escherichia coli/genetics , DNA Transposable Elements/genetics
3.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559720

ABSTRACT

La inversión uterina es una patología de presentación rara e infrecuente. Se presenta el caso de una paciente con inversión uterina no puerperal con requerimiento de histerectomía abdominal total. Sin antecedentes de importancia asistió al servicio de urgencias por un cuadro clínico de dolor abdominal de 10 días de evolución asociado a sangrado vaginal abundante con inestabilidad hemodinámica y sensación de masa vaginal. Al examen físico se evidenció una masa sobresaliente del canal vaginal de aspecto necrótico, por lo que se sospechó mioma nascens. Durante la estancia hospitalaria presentó inestabilidad hemodinámica, por lo que fue llevada a histerectomía abdominal de urgencia con hallazgo de inversión uterina. La inversión uterina no puerperal es infrecuente. Es importante realizar un buen diagnóstico clínico apoyado de las imágenes si se encuentran disponibles, la intervención quirúrgica es necesaria y proporciona un buen pronóstico. La histerectomía vaginal no es sencilla en estos casos, por lo que se recomienda la histerectomía abdominal total.


Uterine inversion is a rare and infrequent disease. The case of a patient with a non-puerperal uterine inversion that had to be treated with a total abdominal hysterectomy is presented in this study. With no important history of disease, she attended the emergency department presenting abdominal pain in the last 10 days associated with vaginal bleeding and mass sensation. The physical examination revealed a protruding necrotic-like mass through the vagina, hence the suspicion of a myoma nascens. During her hospital ward stay, she presented hemodynamic instability, urgent abdominal hysterectomy had to be done which revealed uterine inversion. Non-puerperal uterine inversion is infrequent. Precise clinical diagnosis is important supported by diagnostic imaging if available. The surgical intervention is necessary, giving a good prognosis. Vaginal hysterectomy is not easy in this type of cases, therefore total abdominal hysterectomy is recommended.

4.
mBio ; 15(3): e0323123, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38334377

ABSTRACT

Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-ß-D-muramic acid (anhydroMurNAc) and its associated disaccharide (ß-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.


Subject(s)
Anabaena , Peptidoglycan , Peptidoglycan/metabolism , Bacterial Proteins/metabolism , Anabaena/genetics , Cell Communication , Nitrogen/metabolism , Gene Expression Regulation, Bacterial
5.
Mol Ther Nucleic Acids ; 35(1): 102090, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38187140

ABSTRACT

Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.

6.
Mol Ther ; 32(1): 124-139, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37990494

ABSTRACT

Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Transduction, Genetic , Lentivirus/genetics , Genetic Therapy/methods , Immunity, Innate , Genetic Vectors/genetics , Antigens, CD34
7.
J Transl Med ; 21(1): 879, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049848

ABSTRACT

BACKGROUND: Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative layer. METHODS: We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a microfluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohistochemistry, their associations with clinical features were assessed and their putative functional roles were evaluated in vitro in two lung carcinoid-derived cell lines. RESULTS: The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classification analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analysis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non-tumor tissue. Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, and were associated to both common and disparate functional pathways. Accordingly, modulating the expression of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their functional relevance and potential as actionable targets. CONCLUSIONS: These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.


Subject(s)
Carcinoid Tumor , Lung Neoplasms , Humans , Carcinoid Tumor/genetics , Carcinoid Tumor/metabolism , Carcinoid Tumor/pathology , Lung Neoplasms/pathology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Alternative Splicing/genetics , RNA Splicing Factors/genetics , Biomarkers/metabolism , Biology , Lung/pathology , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Repressor Proteins/metabolism , Cell Cycle Proteins/metabolism , Neuro-Oncological Ventral Antigen
8.
J Exp Clin Cancer Res ; 42(1): 282, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37880792

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Biomarkers , RNA , Pancreatic Neoplasms
9.
Pharmaceutics ; 15(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37896141

ABSTRACT

Humanity is facing a vast prevalence of neurodegenerative diseases, with Alzheimer's disease (AD) being the most dominant, without efficacious drugs, and with only a few therapeutic targets identified. In this scenario, we aim to find molecular entities that modulate imidazoline I2 receptors (I2-IRs) that have been pointed out as relevant targets in AD. In this work, we explored structural modifications of well-established I2-IR ligands, giving access to derivatives with an imidazole-linked heterocycle as a common key feature. We report the synthesis, the affinity in human I2-IRs, the brain penetration capabilities, the in silico ADMET studies, and the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of this new bunch of I2-IR ligands. Selected compounds showed neuroprotective properties and beneficial effects in an in vitro model of Parkinson's disease, rescued the human dopaminergic cell line SH-SY5Y from death after treatment with 6-hydroxydopamine, and showed crucial anti-inflammatory effects in a cellular model of neuroinflammation. After a preliminary pharmacokinetic study, we explored the action of our representative 2-(benzo[b]thiophen-2-yl)-1H-imidazole LSL33 in a mouse model of AD (5xFAD). Oral administration of LSL33 at 2 mg/Kg for 4 weeks ameliorated 5XFAD cognitive impairment and synaptic plasticity, as well as reduced neuroinflammation markers. In summary, this new I2-IR ligand that promoted beneficial effects in a well-established AD mouse model should be considered a promising therapeutic strategy for neurodegeneration.

10.
Article in English | MEDLINE | ID: mdl-36833946

ABSTRACT

The massive fragmentation of knowledge that exists in the current field of physical education enables us to research pedagogical and disciplinary aspects in the educational processes of teachers in training, as this has significant implications for future educational practices. This study proposes to assess the dimensions of knowledge (conceptual, procedural and attitudinal) that stem from the learnings that emerge in physical education teacher training in terms of the disciplinary standards proposed by the Chilean Education Ministry for the Preservice Teacher Education. The study methodology was descriptive and inferential, and the cohort was cross-sectional. A total of 750 fourth- and fifth-year students in training from 13 Chilean universities participated. Of these, 619 subjects were considered: 54.6% (338) men and 45.4% (281) women between the ages of 21 and 25. The questionnaire used for data collection was the "Questionnaire on Conceptual, Procedural and Attitudinal Learning in Preservice Teacher Education in Physical Education" (CACPA-FIDEF), prepared as part of Fondecyt project No. 11190537. The main results indicate that there are no statistically significant differences in the three dimensions in terms of students' sex and type of schooling, with p values > 0.05. In conclusion, the study observed a weak conceptual management of the discipline in future teachers, revealing once again the need to seek out didactic alternatives that enable teachers in training to understand the importance of the conceptual dimension in their learning and teaching processes.


Subject(s)
Teacher Training , Male , Humans , Female , Young Adult , Adult , Chile , Physical Education and Training , Cross-Sectional Studies , Learning
11.
Rev Endocr Metab Disord ; 24(2): 267-282, 2023 04.
Article in English | MEDLINE | ID: mdl-36418657

ABSTRACT

Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.


Subject(s)
Neuroendocrine Tumors , RNA , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology
12.
Transl Res ; 251: 63-73, 2023 01.
Article in English | MEDLINE | ID: mdl-35882361

ABSTRACT

Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , RNA-Binding Proteins/genetics , Cell Proliferation/genetics , RNA Splicing Factors/genetics , Pancreatic Neoplasms/pathology , Neuro-Oncological Ventral Antigen
13.
Movimento (Porto Alegre) ; 29: e29070, 2023. tab
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1558573

ABSTRACT

Resumen El presente trabajo aborda el fenómeno didáctico no-parametral sobre las experiencias educativas circenses en espacios no formales en Chile. El objetivo es analizar los principios didácticos de implementación que emergen de las experiencias educativas circenses en espacios no formales. La metodología utilizada es cualitativa, desde un enfoque fenomenológico-hermenéutico. Se aplica un grupo focal (7 educadores circenses reconocidos por su trayectoria y calidad educativa) y 11 entrevistas semiestructuradas (7 generales y 4 de profundización). La reducción y análisis contempla la transcripción, codificación y posterior categorización, mediante la utilización del software Nvivo Pro en su versión 11. De los resultados destacan las categorías de Espacio-tiempo (10,10%), las Características del Didacta (49,48%) y las dinámicas relacionales (20,91%) como las más referencias. Se destaca una mirada compleja del fenómeno educativo circense que emerge desde una didáctica inclusiva, cercana y sistemática, que tensiona la didáctica tradicional, presentando nuevas relaciones educativas.


Resumo Este artigo trata do fenômeno didático não-paramétrico (Quintar, 2008) sobre as experiências educativas circenses em espaços não formais. O objetivo é analisar os princípios didáticos de implementação que emergem nas experiências educativas circenses em espaços não formais. A metodologia utilizada é qualitativa, a partir de uma abordagem fenomenológico-hermenêutica. São aplicadas 11 entrevistas semiestruturadas (7 gerais e 4 em profundidade) e um grupo focal (7 educadores circenses reconhecidos por sua carreira e qualidade educacional). A redução e análise contemplam a transcrição, codificação e posterior categorização, por meio do uso do software Nvivo Pro versão 11. Os principais resultados destacam as categorias Espaço-Tempo (10,10%), as Características do Didato (49,48%) e dinâmica relacional (20,91%) como as mais referenciais. Destaca-se uma visão complexa do fenômeno educacional circense que emerge de uma didática inclusiva, próxima e sistemática, que enfatiza a didática tradicional, apresentando novas relações educativas.


Abstract This article presents the non-parametric didactic phenomenon (Quintar, 2008) on circus educational experiences in non-formal spaces in Chile, The objective of this article is to analyze the didactic principles of implementation that emerge in circus educational experiences in non-formal spaces. The methodology used is qualitative, from a phenomenological-hermeneutic approach. 11 semi-structured interviews (7 generals and 4 in-depth), and a focus group (7 circus educators recognized for their career and educational quality) were applied. The reduction and analysis contemplate the transcription, coding and subsequent categorization, through the use of the Nvivo Pro 11. The main results highlight the categories of Space-time (10.10%), the Characteristics of the Didact (49.48 %) and relational dynamics (20.91%) as the most references. A complex view of the circus educational phenomenon that emerges from an inclusive, close and systematic didactics is highlighted, which stresses traditional didactics, presenting new educational relationships.

14.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361790

ABSTRACT

Somatostatin (SST), cortistatin (CORT), and their receptors (SSTR1-5/sst5TMD4-TMD5) comprise a multifactorial hormonal system involved in the regulation of numerous pathophysiological processes. Certain components of this system are dysregulated and play critical roles in the development/progression of different endocrine-related cancers. However, the presence and therapeutic role of this regulatory system in prostate cancer (PCa) remain poorly explored. Accordingly, we performed functional (proliferation/migration/colonies-formation) and mechanistic (Western-blot/qPCR/microfluidic-based qPCR-array) assays in response to SST and CORT treatments and CORT-silencing (using specific siRNA) in different PCa cell models [androgen-dependent (AD): LNCaP; androgen-independent (AI)/castration-resistant PCa (CRPC): 22Rv1 and PC-3], and/or in the normal-like prostate cell-line RWPE-1. Moreover, the expression of SST/CORT system components was analyzed in PCa samples from two different patient cohorts [internal (n = 69); external (Grasso, n = 88)]. SST and CORT treatment inhibited key functional/aggressiveness parameters only in AI-PCa cells. Mechanistically, antitumor capacity of SST/CORT was associated with the modulation of oncogenic signaling pathways (AKT/JNK), and with the significant down-regulation of critical genes involved in proliferation/migration and PCa-aggressiveness (e.g., MKI67/MMP9/EGF). Interestingly, CORT was highly expressed, while SST was not detected, in all prostate cell-lines analyzed. Consistently, endogenous CORT was overexpressed in PCa samples (compared with benign-prostatic-hyperplasia) and correlated with key clinical (i.e., metastasis) and molecular (i.e., SSTR2/SSTR5 expression) parameters. Remarkably, CORT-silencing drastically enhanced proliferation rate and blunted the antitumor activity of SST-analogues (octreotide/pasireotide) in AI-PCa cells. Altogether, we provide evidence that SST/CORT system and SST-analogues could represent a potential therapeutic option for PCa, especially for CRPC, and that endogenous CORT could act as an autocrine/paracrine regulator of PCa progression.


Subject(s)
Neuropeptides , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Androgens , Receptors, Somatostatin/genetics , Somatostatin/metabolism , Neuropeptides/metabolism , Cell Line, Tumor , Cell Proliferation
15.
STAR Protoc ; 3(3): 101656, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36092820

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) and organoids are important for modeling human development and disease in vitro. In this study, we describe a protocol to differentiate hiPSC toward pancreatic progenitor (PP) organoids and beta-like cells. We detail the expansion and seeding of hiPSC, PP differentiation, organoid expansion, and the differentiation of PP into beta cells. Upon differentiation, organoids contained beta, delta, and alpha cells. For complete details on the use and execution of this protocol, please refer to Cujba et al. (2022).


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Humans , Organoids
16.
Cell Rep ; 38(9): 110425, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235779

ABSTRACT

The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and ß cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1ß and inhibits its function, and disrupting this interaction partially rescues HNF1ß-dependent transcription. HNF1ß overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1ß overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues ß cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1ß-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients.


Subject(s)
Diabetes Mellitus , Hepatocyte Nuclear Factor 1-alpha/genetics , Induced Pluripotent Stem Cells , Cell Differentiation , Diabetes Mellitus, Type 2 , Humans , Pancreas
17.
Mol Oncol ; 16(3): 764-779, 2022 02.
Article in English | MEDLINE | ID: mdl-34601790

ABSTRACT

Somatostatin receptor subtype 5 (SST5 ) is an emerging biomarker and actionable target in pituitary (PitNETs) and pancreatic (PanNETs) neuroendocrine tumors. Transcriptional and epigenetic regulation of SSTR5 gene expression and mRNA biogenesis is poorly understood. Recently, an overlapping natural antisense transcript, SSTR5-AS1, potentially regulating SSTR5 expression, was identified. We aimed to elucidate whether epigenetic processes contribute to the regulation of SSTR5 expression in PitNETs (somatotropinomas) and PanNETs. We analyzed the SSTR5/SSTR5-AS1 human locus in silico to identify CpG islands. SSTR5 and SSTR5-AS1 expression was assessed by quantitative real-time PCR (qPCR) in 27 somatotropinomas, 11 normal pituitaries (NPs), and 15 PanNETs/paired adjacent (control) samples. We evaluated methylation grade in four CpG islands in the SSTR5/SSTR5-AS1 genes. Results revealed that SSTR5 and SSTR5-AS1 were directly correlated in NP, somatotropinoma, and PanNET samples. Interestingly, selected CpG islands were differentially methylated in somatotropinomas compared with NPs. In PanNETs cell lines, SSTR5-AS1 silencing downregulated SSTR5 expression, altered aggressiveness features, and influenced pasireotide response. These results provide evidence that SSTR5 expression in PitNETs and PanNETs can be epigenetically regulated by the SSTR5-AS1 antisense transcript and, indirectly, by DNA methylation, which may thereby impact tumor behavior and treatment response.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Pituitary Neoplasms , Receptors, Somatostatin , DNA Methylation , Epigenesis, Genetic , Humans , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism
18.
Ann Rheum Dis ; 81(1): 56-67, 2022 01.
Article in English | MEDLINE | ID: mdl-34625402

ABSTRACT

OBJECTIVES: To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS: Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS: An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS: Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.


Subject(s)
Alternative Splicing , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/genetics , RNA/blood , Spliceosomes , Adaptor Proteins, Signal Transducing/genetics , Adult , Alternative Splicing/drug effects , Animals , Anti-Citrullinated Protein Antibodies/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Case-Control Studies , Cell Cycle Proteins/genetics , Cells, Cultured , Citrullination , Cytokines/pharmacology , DNA-Binding Proteins/genetics , Female , Gene Expression/drug effects , Humans , Lymphocytes , Male , Mice , Middle Aged , Monocytes , Neutrophils , RNA/metabolism , RNA Splicing Factors/genetics , RNA, Small Nuclear/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/genetics , Sequence Analysis, RNA , Serine-Arginine Splicing Factors/genetics , Splicing Factor U2AF/genetics , Synovial Fluid/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
19.
J Med Chem ; 64(24): 17887-17900, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34898210

ABSTRACT

Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.


Subject(s)
Cell Cycle Proteins/metabolism , Transcription Factors/metabolism , Automation , Drug Discovery/methods , Humans , Ligands
20.
J Exp Clin Cancer Res ; 40(1): 382, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34857016

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. METHODS: SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. RESULTS: SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, Δ133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. CONCLUSION: SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Neoplastic Stem Cells/metabolism , Phosphoproteins/metabolism , RNA Splicing Factors/metabolism , Adenocarcinoma/pathology , Adult , Aged , Animals , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...