Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087881

ABSTRACT

Perception integrates both sensory inputs and internal models of the environment. In the auditory domain, predictions play a critical role because of the temporal nature of sounds. However, the precise contribution of cortical and subcortical structures in these processes and their interaction remain unclear. It is also unclear whether these brain interactions are specific to abstract rules or if they also underlie the predictive coding of local features. We used high-field 7T functional magnetic resonance imaging to investigate interactions between cortical and subcortical areas during auditory predictive processing. Volunteers listened to tone sequences in an oddball paradigm where the predictability of the deviant was manipulated. Perturbations in periodicity were also introduced to test the specificity of the response. Results indicate that both cortical and subcortical auditory structures encode high-order predictive dynamics, with the effect of predictability being strongest in the auditory cortex. These predictive dynamics were best explained by modeling a top-down information flow, in contrast to unpredicted responses. No error signals were observed to deviations of periodicity, suggesting that these responses are specific to abstract rule violations. Our results support the idea that the high-order predictive dynamics observed in subcortical areas propagate from the auditory cortex.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Auditory Perception , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Auditory Perception/physiology , Young Adult , Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Cortex/diagnostic imaging , Brain Mapping/methods
2.
Front Psychol ; 15: 1272841, 2024.
Article in English | MEDLINE | ID: mdl-38420174

ABSTRACT

Introduction: The pursuit of convergence and the social behavioral adjustment of conformity are fundamental cooperative behaviors that help people adjust their mental frameworks to reach a common goal. However, while social psychology has extensively studied conformity by its influence context, there is still plenty to investigate about the neural cognitive mechanisms involved in this behavior. Methods: We proposed a paradigm with two phases, a pre-activation phase to enhance cooperative tendencies and, later, a social decision-making phase in which dyads had to make a perceptual estimation in three consecutive trials and could converge in their decisions without an explicit request or reward to do so. In Study 1, 80 participants were divided in two conditions. In one condition participants did the pre-activation phase alone, while in the other condition the two participants did it with their partners and could interact freely. In Study 2, we registered the electroencephalographical (EEG) activity of 36 participants in the social decision-making phase. Results: Study 1 showed behavioral evidence of higher spontaneous convergence in participants who interacted in the pre-activation phase. Event related Potentials (ERP) recorded in Study 2 revealed signal differences in response divergence in different time intervals. Time-frequency analysis showed theta, alpha, and beta evidence related to cognitive control, attention, and reward processing associated with social convergence. Discussion: Current results support the spontaneous convergence of behavior in dyads, with increased behavioral adjustment in those participants who have previously cooperated. In addition, neurophysiological components were associated with discrepancy levels between participants, and supported the validity of the experimental paradigm to study spontaneous social behavioral adaptation in experimental settings.

3.
Sci Rep ; 13(1): 11211, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433866

ABSTRACT

Humans naturally synchronize their behavior with other people. However, although it happens almost automatically, adjusting behavior and conformity to others is a complex phenomenon whose neural mechanisms are still yet to be understood entirely. The present experiment aimed to study the oscillatory synchronization mechanisms underlying automatic dyadic convergence in an EEG hyperscanning experiment. Thirty-six people performed a cooperative decision-making task where dyads had to guess the correct position of a point on a line. A reinforcement learning algorithm was used to model different aspects of the participants' behavior and their expectations of their peers. Intra- and inter-connectivity among electrode sites were assessed using inter-site phase clustering in three main frequency bands (theta, alpha, beta) using a two-level Bayesian mixed-effects modeling approach. The results showed two oscillatory synchronization dynamics related to attention and executive functions in alpha and reinforcement learning in theta. In addition, inter-brain synchrony was mainly driven by beta oscillations. This study contributes preliminary evidence on the phase-coherence mechanism underlying inter-personal behavioral adjustment.


Subject(s)
Gastropoda , Social Adjustment , Humans , Animals , Bayes Theorem , Thalamus , Social Behavior , Algorithms
4.
Sci Rep ; 11(1): 18523, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535731

ABSTRACT

Music-evoked pleasantness has been extensively reported to be modulated by familiarity. Nevertheless, while the brain temporal dynamics underlying the process of giving value to music are beginning to be understood, little is known about how familiarity might modulate the oscillatory activity associated with music-evoked pleasantness. The goal of the present experiment was to study the influence of familiarity in the relation between theta phase synchronization and music-evoked pleasantness. EEG was recorded from 22 healthy participants while they were listening to both familiar and unfamiliar music and rating the experienced degree of evoked pleasantness. By exploring interactions, we found that right fronto-temporal theta synchronization was positively associated with music-evoked pleasantness when listening to unfamiliar music. On the contrary, inter-hemispheric temporo-parietal theta synchronization was positively associated with music-evoked pleasantness when listening to familiar music. These results shed some light on the possible oscillatory mechanisms underlying fronto-temporal and temporo-parietal connectivity and their relationship with music-evoked pleasantness and familiarity.


Subject(s)
Brain/physiology , Music , Recognition, Psychology , Adult , Auditory Perception , Emotions , Female , Humans , Male , Pleasure , Young Adult
5.
Mov Disord ; 36(9): 2162-2172, 2021 09.
Article in English | MEDLINE | ID: mdl-33998063

ABSTRACT

BACKGROUND: Apathy, a common neuropsychiatric disturbance in Huntington's disease (HD), is subserved by a complex neurobiological network. However, no study has yet employed a whole-brain approach to examine underlying regional vulnerabilities that may precipitate apathy changes over time. OBJECTIVES: To identify whole-brain gray matter volume (GMV) vulnerabilities that may predict longitudinal apathy development in HD. METHODS: Forty-five HD individuals (31 female) were scanned and evaluated for apathy and other neuropsychiatric features using the short-Problem Behavior Assessment for a maximum total of six longitudinal visits (including baseline). In order to identify regions where changes in GMV may describe changes in apathy, we performed longitudinal voxel-based morphometry (VBM) on those 33 participants with a magnetic resonance imaging (MRI) scan on their second visit at 18 ± 6 months follow-up (78 MRI datasets). We next employed a generalized linear mixed-effects model (N = 45) to elucidate whether initial and specific GMV may predict apathy development over time. RESULTS: Utilizing longitudinal VBM, we revealed a relationship between increases in apathy and specific GMV atrophy in the right middle cingulate cortex (MCC). Furthermore, vulnerability in the right MCC volume at baseline successfully predicted the severity and progression of apathy over time. CONCLUSIONS: This study highlights that individual differences in apathy in HD may be explained by variability in atrophy and initial vulnerabilities in the right MCC, a region implicated in action-initiation. These findings thus serve to facilitate the prediction of an apathetic profile, permitting targeted, time-sensitive interventions in neurodegenerative disease with potential implications in otherwise healthy populations. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Apathy , Huntington Disease , Neurodegenerative Diseases , Brain/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Huntington Disease/diagnostic imaging , Magnetic Resonance Imaging
6.
Neuroimage ; 212: 116665, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32087373

ABSTRACT

Listening to pleasant music engages a complex distributed network including pivotal areas for auditory, reward, emotional and memory processing. On the other hand, frontal theta rhythms appear to be relevant in the process of giving value to music. However, it is not clear to which extent this oscillatory mechanism underlies the brain interactions that characterize music-evoked pleasantness and its related processes. The goal of the present experiment was to study brain synchronization in this oscillatory band as a function of music-evoked pleasantness. EEG was recorded from 25 healthy subjects while they were listening to music and rating the experienced degree of induced pleasantness. By using a multilevel Bayesian approach we found that phase synchronization in the theta band between right temporal and frontal signals increased with the degree of pleasure experienced by participants. These results show that slow fronto-temporal loops play a key role in music-evoked pleasantness.


Subject(s)
Brain/physiology , Cortical Synchronization/physiology , Music/psychology , Pleasure/physiology , Theta Rhythm/physiology , Auditory Perception/physiology , Female , Humans , Male , Reward , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL