Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 285: 127763, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805979

ABSTRACT

Soil desertification poses a critical ecological challenge in arid and semiarid climates worldwide, leading to decreased soil productivity due to the disruption of essential microbial community processes. Fungi, as one of the most important soil microbial communities, play a crucial role in enhancing nutrient and water uptake by plants through mycorrhizal associations. However, the impact of overgrazing-induced desertification on fungal community structure, particularly in the Caatinga biome of semiarid regions, remains unclear. In this study, we assessed the changes in both the total fungal community and the arbuscular mycorrhizal fungal community (AMF) across 1. Natural vegetation (native), 2. Grazing exclusion (20 years) (restored), and 3. affected by overgrazing-induced degradation (degraded) scenarios. Our assessment, conducted during both the dry and rainy seasons in Irauçuba, Ceará, utilized Internal Transcribed Spacer (ITS) gene sequencing via Illumina® platform. Our findings highlighted the significant roles of the AMF families Glomeraceae (∼71% of the total sequences) and Acaulosporaceae (∼14% of the total sequences) as potential key taxa in mitigating climate change within dryland areas. Moreover, we identified the orders Pleosporales (∼35% of the total sequences) and Capnodiales (∼21% of the total sequences) as the most abundant soil fungal communities in the Caatinga biome. The structure of the total fungal community differed when comparing native and restored areas to degraded areas. Total fungal communities from native and restored areas clustered together, suggesting that grazing exclusion has the potential to improve soil properties and recover fungal community structure amid global climate change challenges.


Subject(s)
Fungi , Mycobiome , Mycorrhizae , Soil Microbiology , Soil , Brazil , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/physiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Soil/chemistry , Climate Change , Desert Climate , Biodiversity , DNA, Fungal/genetics , Seasons , Ecosystem
2.
An Acad Bras Cienc ; 94(1): e20200457, 2022.
Article in English | MEDLINE | ID: mdl-35043847

ABSTRACT

The assessment of ecosystem functions in Cerrado is important to implement practices of conservation. Recently, a 'rapid ecosystem function assessment' (REFA) for measuring ecosystem functions has been proposed and tested as a suitable method. Thus, this study aimed to assess the proxies of ecosystem functions of three physiognomies of Cerrado through REFA. This method was applied in three different preserved physiognomies of Cerrado from Northeastern, Brazil, namely: Campo Graminoide (CG), Cerrado Stricto Sensu (CSS), and Cerradão (CD). All proxies for the selected ecosystem functions differed between sites and seasons. The above- and belowground primary productivity and microbial biomass C were higher in CD than in CSS and CG. The above- and belowground secondary productivity and decomposition were higher and similar in CD and CSS as compared to CG. The principal component analysis explained 89.8% of the data variation and clustered the majority of ecosystem functions with CD, in both seasons and CSS in the wet season. The proxies of ecosystem functions measured through REFA showed differences between the physiognomies of Cerrado. Since each physiognomy of Cerrado presents different plant richness and diversity, and soil conditions, these characteristics contribute to influencing multiple ecosystem functions.


Subject(s)
Ecosystem , Physiognomy , Biomass , Brazil , Soil , Soil Microbiology
3.
An Acad Bras Cienc ; 93(3): e20190183, 2021.
Article in English | MEDLINE | ID: mdl-34161510

ABSTRACT

Studies evaluating the structure and diversity of bacterial communities in arid environments including the rhizosphere of local and adapted plant species are important. Therefore, we used a sequencing of the 16S ribosomal RNA gene for describing the structure and diversity of soil bacterial community in three zones: Agreste, Transition and Sertão. The bacterial community was clustered in 9,838 OTUs in Agreste, 8,388 OTUs in the transition, and 14,849 OTUs for Sertão. Among the most abundant phyla, Proteobacteria and Acidobacteria were abundant in Agreste and Sertão, respectively, while Actinobacteria were abundant in Transition and Sertão. Specific taxa of Proteobacteria, in Agreste, and Actinobacteria, in Sertão, exhibited differences according to biotic and abiotic conditions. Thus, the structure and diversity of bacterial community were different in these areas and were influenced by environmental and soil conditions.


Subject(s)
Opuntia , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil , Soil Microbiology
4.
An Acad Bras Cienc ; 91(4): e20190049, 2019.
Article in English | MEDLINE | ID: mdl-31721921

ABSTRACT

Different physiognomies across the Cerrado could influence the microbial C:N:P ratio in the soil since these physiognomies present different abundance and diversity of plant species. Thus, the aim of this study was to evaluate the microbial C:N:P ratio in soil across three different physiognomies of Cerrado in the Northeast, Brazil, namely campo graminóide (dominance of grasses), cerrado stricto sensu (dominance of grasses, shrubs, low trees, and woody stratum), and cerradão (dominance of woody stratum). Campo graminóide was characterized by lower values of total organic C, N, microbial C:P, N:P, and soil C:N. Cerrado stricto sensu presented average values for most of the measured parameters, while cerradão presented higher values of microbial C, N, P, organic C, N and soil C:P and C:N ratios. The principal component analysis showed that the samples grouped according to the sites, with a clear gradient from campo graminóide to cerradão. Therefore, the differences of vegetation across physiognomies of Cerrado influenced the soil microbial C:N:P ratio, where cerradão showed highest microbial C:N:P ratio than soil under campo graminóide.


Subject(s)
Conservation of Natural Resources , Plant Physiological Phenomena , Soil Microbiology , Biomass , Brazil
5.
Waste Manag ; 30(10): 1976-80, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20359878

ABSTRACT

Composting has been recognized as one of the most cost effective and environmentally sound alternatives for organic wastes recycling from long and composted wastes have a potential to substitute inorganic fertilizers. We investigated the potential of composted tannery sludge for ornamental purposes and to examine the effects of two different composts and concentrations on ornamental Capsicum growth. The two composts were produced with tannery sludge and the composition of each compost was: compost(1) of tannery sludge (C(1)TS) - tannery sludge+sugarcane straw and cattle manure mixed in the ratio 1:3:1 (v:v:v); compost(2) of tannery sludge (C(2)TS) - tannery sludge+"carnauba" straw and cattle manure in the ratio 1:3:1 (v:v:v). Each compost was amended with soil at rates (% v:v) of 0%, 25%, 50%, 75% and 100% (designation hereafter as T(1)-T(5), respectively). The number of leaves and fruits were counted, and the stem length was also measured. Chlorophyll content was recorded on three leaves of each harvested plant prior to harvest. Number of leaves and fruits, stem length, dry weight of shoot and roots did not vary significantly between the plants grown in two tannery composts. All the treatments with composted tannery sludge application (T(2)-T(5)) significantly increased the number of leaves and fruits, stem length and chlorophyll content compared with the control (T(1)). The chlorophyll content was higher in plants growing in the C(1)TS compared to C(2)TS. The results of the present study further suggest that Capsicum may be a good option to be grown on composted tannery amended soil.


Subject(s)
Agriculture/methods , Capsicum/growth & development , Soil , Tanning , Waste Disposal, Fluid/methods , Animals , Biomass , Cattle , Chlorophyll/analysis , Manure/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...