Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 212(Pt D): 113578, 2022 09.
Article in English | MEDLINE | ID: mdl-35649490

ABSTRACT

This study investigated the influence of temperature (20 and 30 °C) on the formation and stability of aerobic granules in sequential batch reactors (SBR). Therefore, two lab-scale SBRs operated at 20 and 30 °C (SBR20 and SBR30) were used. The reactors were fed with municipal wastewater (CODt:TN:TP 100:15:1.7), leading to mean organic loading rates (OLR) of 1.3 ± 0.4 kgCODt m-3 day-1. Both reactors had the same height/diameter ratio of 4.2 and were inoculated with activated sludge from a municipal wastewater treatment plant. The operational conditions were also the same for both temperatures and lasted in stable process parameters for over 100 days. By optimizing the aeration and oxygen concentration, a high removal efficiency of NH4-N (∼99%) and COD (∼90%) was achieved in both reactors, despite the poor C:N:P ratio at the influent. Furthermore, a relatively low oxygen concentration of 2 mg L-1 was defined as the set point for the control strategy. Nevertheless, granulation at 30 °C was significantly faster, resulting in more stable sludge volume index (SVI) values (SVI10/SVI30 < 1.1). The granules formed at 30 °C were also larger, more compact, and considerably more stable against system disturbances. However, at higher temperatures, larger granules might be required for nitrate removal because of the increased oxygen diffusion rates. Finally, microbiological 16S rRNA gene amplicon analysis for both systems indicated major differences relatively to the inoculum sludge only for nitrogen-degrading organisms.


Subject(s)
Sewage , Wastewater , Aerobiosis , Bioreactors/microbiology , Nitrogen , Oxygen , RNA, Ribosomal, 16S , Temperature , Waste Disposal, Fluid/methods
2.
Sci Total Environ ; 843: 156988, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35772566

ABSTRACT

Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (CODt) of ≈ 200 mg.L-1. The applied organic loading rate was 0.9 ± 0.3 kg CODt.m-3.d-1 in the experiment. Aerobic granular sludge developed gradually. After 87-day operation, granules (diameter ≥ 0.2 mm) were ≥ 50 % of the biomass, and after 168 days, complete granulation was obtained (≥ 80 % of biomass). In the third period (days 168-247, complete granulation), mixed liquor biomass reached a volatile suspended solids (VSS) concentration of 1.2 ± 0.3 g VSS.L-1, with the granules remaining stable until the experimental end. In this period, low effluent concentrations of COD, nitrogen (NH4+-N, NO2--N and NO3--N) and phosphate (PO43-P) were obtained (mg.L-1): 36 ± 11; 4 ± 5; 3 ± 3, 4 ± 5; and 0.9 ± 0.4, respectively. COD, NH4+-N, and PO43--P removal efficiencies (%) were 80 ± 11; 83 ± 20; and 55 ± 24, respectively. Heterotrophic nitrification and SND were observed, resulting in a process efficiency of 31 % even with dissolved oxygen applied to saturation. The phosphate removal was mainly attributed to denitrifying phosphorus accumulating organisms. Pseudomonas, the dominant genus found, acted in nitrogen and phosphorus removal. Pseudoxanthomonas also assisted in phosphorus removal. Bacterial communities in the flocs (≈ 20 % of biomass) during the last period were similar to those in the granules; therefore, they constituted the basis for granule formation, directly contributed to the simultaneous good removal of organic matter and nutrients.


Subject(s)
Sewage , Wastewater , Bioreactors/microbiology , Denitrification , Nitrification , Nitrogen/analysis , Nutrients , Phosphates , Phosphorus , Sewage/microbiology , Waste Disposal, Fluid/methods , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...