Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 120: 111651, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545819

ABSTRACT

The use of nanoparticles as drug delivery systems to simultaneously carry several therapeutic agents is an attractive idea to create new synergic treatments and to develop the next generation of cancer therapies. Therefore, the goal of this study was the simultaneous encapsulation of a hydrophilic drug, sodium diethyldithiocarbamate (DETC), and a hydrophobic drug, 4-nitrochalcone (4NC), in beeswax nanoparticles (BNs) to evaluate the in vitro synergic activity of this combination against melanoma (B16F10) cells. BNs were prepared by water/oil/water double emulsion in the absence of organic solvents. Transmission electron microscopy imaging and dynamic light scattering analyses indicated the formation of BNs with a semispherical shape, average diameter below 250 nm, relatively narrow distributions, and negative zeta potential. The double emulsion technique proved to be effective for the simultaneous encapsulation of DETC and 4NC with efficiencies of 86.2% and 98.7%, respectively, and this encapsulation did not affect the physicochemical properties of the BNs. DETC and 4NC loaded in BNs exhibited a higher cytotoxicity toward B16F10 cells than free 4NC and DETC. This simultaneous encapsulation led to a synergic effect of DETC and 4NC on B16F10 cells, decreasing the cell viability from 46% (DETC BNs) and 54% (4NC BNs) to 64% (DETC+4NC BNs). Therefore, the IC50 of DETC+4NC was also lower than that of either when individually encapsulated, and that of free DETC or 4NC. Therefore, DETC and 4NC were efficiently simultaneously encapsulated in BNs and this drug combination was able to generate an in vitro synergic therapeutic effect on B16F10 cells.


Subject(s)
Melanoma , Nanoparticles , Ditiocarb , Drug Carriers , Humans , Particle Size , Waxes
2.
Ciênc. rural ; 45(11): 2082-2088, Nov. 2015. tab, graf
Article in English | LILACS | ID: lil-762939

ABSTRACT

ABSTRACT:The encapsulation of progesterone in poly (hydroxybutirate-co-hydroxyvalerate) (PHBV), poly (ε-caprolactone) (PCL), poly (L-lactic acid) (PLLA) nanoparticles and PHBV/PCL and PHBV/PLLA blend nanoparticles was investigated in this research. Nanoparticles were produced by miniemulsion/solvent evaporation technique with lecithin as surfactant and were characterized regarding to z-average diameter (Dz) and polydispersity (PDI), progesterone recovery yield and encapsulation efficiency. Possible interactions between progesterone and the polymer matrices were investigated by Fourier Transform Infrared Spectroscopy (FTIR). High recoveries (up to 102.43±1.80% for the PHBV/PLLA blend) and encapsulation efficiencies (up to 99.53±0.04% for PCL) were achieved and the nanoparticles presented narrow size distribution (0.12±0.03 for PLLA). PCL nanoparticles (217.5±2.12nm) presented significant difference with the Dz from all the other formulations (P<0.05). The most evident interaction between progesterone and the nanoparticles polymeric matrix was found to PHBV/PCL due to the increase in the intensity of the band located in 1631 cm-1.


RESUMO:A encapsulação de progesterona em nanopartículas de poli(hidroxibutirato-co-hidroxivalerato) (PHBV), poli (ε-caprolactona) (PCL), poli (L-ácido lático) (PLLA) e em nanopartículas blenda de PHBV/PCL e PHBV/PLLA foi investigada neste trabalho. As nanopartículas foram produzidas pela técnica de miniemulsificação/evaporação do solvente com lecitina como surfactante e foram caracterizadas em relação ao diâmetro médio em intensidade (Dz) e o índice de polidispersão (PDI), rendimento de recuperação e eficiência de encapsulação de progesterona. Possíveis interações entre progesterona e as matrizes poliméricas foram investigadas por Espectroscopia de Infravermelho por Transformada de Fourier (FTIR). Valores elevados de rendimento de recuperação (de até 102,43±1,80% para a blenda PHBV/PLLA) e eficiência de encapsulação (de até 99,53±0,04% para PCL) foram obtidos e as nanopartículas apresentaram distribuição de tamanho estreita (0,12±0,03 para PLLA). As nanopartículas de PCL (217,5±2,12nm) apresentaram diferença significativa com todas as outras formulações (P<0,05) quanto ao Dz. A interação mais evidente entre progesterona e a matriz polimérica das nanopartículas foi para a blenda PHBV / PCL, devido ao aumento na intensidade da banda localizada em 1631 cm-1.

3.
Food Chem ; 172: 99-104, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25442529

ABSTRACT

Curcumin is a natural yellow-orange pigment extracted from turmeric and is a potential substitute of health-dangerous artificial dyes. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin stability and water solubility but curcumin concentration inside the nanoparticles must be precisely known. A reliable method to determine the actual curcumin concentration must be validated since the validation procedures warrant that the method is adequate and sufficient for the specific application involved. This work describes the validation parameters given by the International Conference on Harmonisation (ICH) guidelines to adopt an analytical method based on Ultraviolet-visible spectroscopy for the quantitative determination of curcumin encapsulated in poly(l-lactic acid) nanoparticles. This method was validated in respect to linearity, detection limit, quantification limit, accuracy and precision. Studies on the analytical procedure validation warranted safety in final results obtained for the curcumin concentration in the nanoparticles.


Subject(s)
Curcumin/analysis , Lactic Acid/analysis , Nanoparticles/analysis , Polymers/analysis , Spectrophotometry, Ultraviolet/methods , Polyesters
SELECTION OF CITATIONS
SEARCH DETAIL
...