Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 886: 164024, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37172853

ABSTRACT

Driven by surges in global gold prices and additional socio-economic factors, artisanal small-scale gold mining (ASGM) in the Global South is increasing and driving emissions of significant quantities of mercury (Hg) into the air and freshwater. Hg can be toxic to animal and human populations and exacerbate the degradation of neotropical freshwater ecosystems. We examined drivers of Hg accumulation in fish that inhabit oxbow lakes of Peru's Madre de Dios, a region with high biodiversity value and increasing human populations that depend on ASGM. We hypothesized that fish Hg levels would be driven by local ASGM activities, by environmental Hg exposure, by water quality, and by fish trophic level. We sampled fish in 20 oxbow lakes spanning protected areas and areas subject to ASGM during the dry season. Consistent with previous findings, Hg levels were positively associated with ASGM activities, and were higher in larger, carnivorous fish and where water had lower dissolved oxygen levels. In addition, we found a negative relationship between fish mercury levels associated with ASGM and the occurrence of the piscivorous giant otter. The link between fine-scale quantification of spatial ASGM activity and Hg accumulation, as indicated by the result that in the lotic environment, localized effects of gold mining activities are stronger drivers (77 % model support) of Hg accumulation than environmental exposure (23 %) constitutes a novel contribution to a growing body of literature on Hg contamination. Our findings provide additional evidence of high Hg exposure risks to neotropical human and top carnivore populations subject to the impacts of ASGM, which depend on freshwater ecosystems undergoing gradual degradation. The documented spatial variation in Hg accumulation and increased Hg levels in carnivorous fish should serve as a warning to human communities in Madre de Dios to avoid the proximity of high-intensity gold mining areas and minimize local carnivorous fish consumption.


Subject(s)
Mercury , Otters , Animals , Humans , Mercury/analysis , Lakes , Ecosystem , Gold , Mining , Fishes/metabolism , Otters/metabolism , Environmental Monitoring
2.
Environ Sci Process Impacts ; 17(2): 478-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25573610

ABSTRACT

Artisanal and small-scale gold mining (ASGM) is a major contributor to deforestation and the largest anthropogenic source of atmospheric mercury worldwide. Despite significant information on the direct health impacts of mercury to ASGM miners, the impact of mercury contamination on downstream communities has not been well characterized, particularly in Peru's Madre de Dios region. In this area, ASGM has increased significantly since 2000 and has led to substantial political and social controversy. This research examined the spatial distribution and transport of mercury through the Madre de Dios River with distance from ASGM activity. This study also characterized risks for dietary mercury exposure to local residents who depend on fish from the river. River sediment, suspended solids from the water column, and fish samples were collected in 2013 at 62 sites near 17 communities over a 560 km stretch of the Madre de Dios River and its major tributaries. In areas downstream of known ASGM activity, mercury concentrations in sediment, suspended solids, and fish within the Madre de Dios River were elevated relative to locations upstream of mining. Fish tissue mercury concentrations were observed at levels representing a public health threat, with greater than one-third of carnivorous fish exceeding the international health standard of 0.5 mg kg(-1). This study demonstrates that communities located hundreds of kilometers downstream of ASGM activity, including children and indigenous populations who may not be involved in mining, are at risk of dietary mercury exposure that exceed acceptable body burdens. This report represents the first systematic study of the region to aid policy decision-making related to ASGM activities in Peru.


Subject(s)
Environmental Exposure/statistics & numerical data , Mercury/analysis , Mining , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Diet , Fishes/metabolism , Gold , Humans , Mercury/metabolism , Peru , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...