Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14955, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942802

ABSTRACT

The size of the drug particles is one of the essential factors for the proper absorption of the drug compared to the dose of the drug. When particle size is decreased, drug uptake into the body increases. Recent studies have revealed that the rapid expansion of supercritical solution with cosolvent plays a significant role in preparing micron and submicron particles. This paper examines the preparation of Erlotinib hydrochloride nanoparticles using a supercritical solution through the cosolvent method for the first time. An examination of the parameters of temperature (318-338 K), pressures (15-25 MPa) and nozzle diameter (300-700 µm) was investigated by Box-Behnken design, and their respective effects on particle size revealed that the nozzle diameter has a more significant impact on particle size than the other parameters. The smallest particles were produced at temperature 338 K, pressure 20 MPa, and nozzle diameter 700 µm. Besides, the ERL nanoparticles were characterized using SEM, DLS, XRD, FTIR, and DSC analyses. Finally, the results showed that the average size of the ERL particles decreased from 31.6 µm to 200-1100 nm.


Subject(s)
Antineoplastic Agents , Erlotinib Hydrochloride , Nanoparticles , Particle Size , Erlotinib Hydrochloride/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Temperature , Chromatography, Supercritical Fluid/methods , Drug Compounding/methods , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...