Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Photobiomodul Photomed Laser Surg ; 38(11): 656-660, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33090930

ABSTRACT

Background: Cellular senescence is one of the major factors contributing to the aging process. Photobiomodulation (PBM) is known to trigger an array of cellular responses, but there are no data on how it affects the process of cellular senescence. In this study, we analyze the effect of PBM on the cellular senescence and telomere dynamics. Methods: Human dermal fibroblasts were irradiated by a panel of light-emitting diodes with 590 nm and dose 30 J/cm2 accumulated over 1200 sec repeated in 4-day cycle within 40 days. After the last cycle of PBM treatment, the difference in number of senescent cells between PBM treated groups end nontreated control groups was measured by senescent sensitive ß-galactosidase assay, and the difference in average telomere length between the experimental end control groups was analyzed using relative human telomere length quantitative Polymerase Chain Reaction (qPCR) assay. Results: After 10 cycles of irradiation, the percentage of senescent cells in PBM-treated cultures was 19.7% ± 4.5%, p < 0.05 smaller than the percentage of senescent cells in the control group, and their relative telomere length was 1.19 ± 0.09-fold, p < 0.05 greater than nontreated controls. Conclusions: Our study demonstrates for the first time that PBM with appropriate parameters can delay the attrition of the telomeres and the entry of cells into senescence, suggesting a potential involvement of telomerase reactivation. A hypothetical mechanism for this light-induced antiaging effect is discussed.


Subject(s)
Telomerase , Telomere Shortening , Cellular Senescence , Fibroblasts/metabolism , Humans , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
2.
Biotechnol Biotechnol Equip ; 28(2): 184-191, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-26019504

ABSTRACT

The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells.

SELECTION OF CITATIONS
SEARCH DETAIL