Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hyperthermia ; 27(1): 86-99, 2011.
Article in English | MEDLINE | ID: mdl-21070140

ABSTRACT

PURPOSE: This article explores the feasibility of using coupled electromagnetic and thermodynamic simulations to improve planning and control of hyperthermia treatments for cancer. The study investigates the usefulness of preplanning to improve heat localisation in tumour targets in treatments monitored with PRFS-based magnetic resonance thermal imaging (MRTI). METHODS: Heating capabilities of a cylindrical radiofrequency (RF) mini-annular phased array (MAPA) applicator were investigated with electromagnetic and thermal simulations of SAR in homogeneous phantom models and two human leg sarcomas. High frequency structure simulator (HFSS) (Ansoft) was used for electromagnetic simulations and SAR patterns were coupled into EPhysics (Ansoft) for thermal modelling with temperature-dependent variable perfusion. Simulations were accelerated by integrating tumour-specific anatomy into a pre-gridded whole body tissue model. To validate this treatment planning approach, simulations were compared with MR thermal images in both homogenous phantoms and heterogeneous tumours. RESULTS: SAR simulations demonstrated excellent agreement with temperature rise distributions obtained with MR thermal imaging in homogeneous phantoms and clinical treatments of large soft-tissue sarcomas. The results demonstrate feasibility of preplanning appropriate relative phases of antennas for localising heat in tumour. CONCLUSIONS: Advances in the accuracy of computer simulation and non-invasive thermometry via MR thermal imaging have provided powerful new tools for optimisation of clinical hyperthermia treatments. Simulations agree well with MR thermal images in both homogeneous tissue models and patients with lower leg tumours. This work demonstrates that better quality hyperthermia treatments should be possible when simplified hybrid model simulations are performed routinely as part of the clinical pretreatment plan.


Subject(s)
Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Sarcoma/therapy , Computer Simulation , Electromagnetic Phenomena , Humans , Patient Care Planning , Temperature
2.
Microw J (Int Ed) ; 51(12): 28-42, 2008.
Article in English | MEDLINE | ID: mdl-25324585

ABSTRACT

Recent developments have reinvigorated clinical investigations of hyperthermia (HT) as a viable adjuvant treatment in the fight against cancer. Researchers are placing a greater emphasis on multi-modal approaches that include mild temperatures (40°C - 43°C) and standard therapies like radiation and chemotherapy than on achieving higher temperature treatments (43°C-45°C) which were pursued in the past. The emergence of robust computer simulation tools for accurate hyperthermia treatment planning has aided this resurgence by helping improve the quality of heating. This article outlines a recent collaborative study at Duke University to demonstrate the capabilities of a new suite of 3D electromagnetic and thermodynamic simulation tools for treatment planning of external hyperthermia treatments with a radio frequency (RF) phased array heat applicator. Following a brief introduction to the rationale for moderate temperature hyperthermia and current methodology for heating tissue at depth in the body, the article will present a new approach for improved heating based on treatment planning with electromagnetic simulation software tools. Procedures, benefits, and a comparison of simulated heating patterns with those measured in two clinical hyperthermia treatments of advanced fibrous histiocytoma (soft-tissue sarcoma) tumors will be presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...