Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(33): 12704-12708, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35943089

ABSTRACT

The interplay of many factors influences the outcomes of self-assembly reactions. Using an acetylene-appended quaterpyridine ligand we show that both the size of the metal ion and the presence of steric repulsion between the acetylene groups result in the exclusive formation of [M2L3] helicates rather than a helicate/tetrahedron equilibrium.

2.
Inorg Chem ; 61(30): 11667-11674, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35862437

ABSTRACT

A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.

3.
Inorg Chem ; 61(17): 6641-6649, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35442030

ABSTRACT

We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.

4.
Angew Chem Int Ed Engl ; 61(7): e202115555, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-34897921

ABSTRACT

Self-assembled coordination cages and metal-organic frameworks have relied extensively on symmetric ligands in their formation. Here we have prepared a relatively simple system employing an unsymmetric ligand that results in two distinct self-assembled structures, a [Fe2 L3 ]4+ helicate and a [Fe4 L6 ]8+ cage composed of 10 interconverting diastereomers and their enantiomers. We show that the steric profile of the ligand controls the complexity, thermodynamics and kinetics of interconversion of the system.

5.
Chem Commun (Camb) ; 57(40): 4918-4921, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33870998

ABSTRACT

Nature builds simple molecules into highly complex assemblies, which are involved in all fundamental processes of life. Some of the most intriguing biological assemblies are those that can be precisely reconfigured to achieve different functions using the same building blocks. Understanding the reconfiguration of synthetic self-assembled systems will allow us to better understand the complexity of proteins and design useful artificial chemical systems. Here we have prepared a relatively simple system in which two distinct self-assembled structures, a [Fe2L3]4+ helicate and a [Fe4L6]8+ cage that are formed from the same precursors, coexist at equilibrium. We have measured the rates of interconversion of these two species and propose a mechanism for the transformation.

6.
Inorg Chem ; 57(14): 8476-8486, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29969245

ABSTRACT

We have designed linear metalloligands which contain a central photoactive [Ru(N∧N)3]2+ unit bordered by peripheral metal binding sites. The combination of these metalloligands with Zn(II) and Fe(II) ions leads to heterometallic tetrahedral cages, which were studied by NMR spectroscopy, mass spectrometry, and photophysical methods. Like the parent metalloligands, the cages remain emissive in solution. This approach allows direct incorporation of the favorable properties of ruthenium(II) polypyridyl complexes into larger self-assembled structures.

7.
Inorg Chem ; 55(24): 12737-12751, 2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27989210

ABSTRACT

A series of enantiopure ruthenium(II) polypyridyl complexes are reported that feature pendant pyridyl groups suitable for building larger self-assembled structures. The complexes are characterized in detail in solution using NMR spectroscopy, cyclic voltammetry, and photophysical methods and in the solid state using single-crystal X-ray crystallography. The complexes are luminescent, displaying long excited-state lifetimes that are quenched when the pendant pyridyl groups are protonated. Reaction with cadmium(II) ions results in the formation of a mixed-metal one-dimensional coordination polymer, which was characterized by single-crystal X-ray crystallography.

8.
Angew Chem Int Ed Engl ; 54(51): 15457-61, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26515792

ABSTRACT

The ionothermal synthesis, structure, and magnetic susceptibility of a novel inorganic-organic hybrid material, imidazolium vanadium(III,IV) oxyfluoride [C3 H5 N2 ][V9 O6 F24 (H2 O)2 ] (ImVOF) are presented. The structure consists of inorganic vanadium oxyfluoride slabs with kagome layers of V(4+) S=${{ 1/2 }}$ ions separated by a mixed valence layer. These inorganic slabs are intercalated with imidazolium cations. Quinuclidinium (Q) and pyrazinium (Pyz) cations can also be incorporated into the hybrid structure type to give QVOF and PyzVOF analogues, respectively. The highly frustrated topology of the inorganic slabs, along with the quantum nature of the magnetism associated with V(4+) , means that these materials are excellent candidates to host exotic magnetic ground states, such as the highly sought quantum spin liquid. Magnetic susceptibility measurements of all samples suggest an absence of conventional long-range magnetic order down to 2 K despite considerable antiferromagnetic exchange.

SELECTION OF CITATIONS
SEARCH DETAIL
...