Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1225055, 2023.
Article in English | MEDLINE | ID: mdl-38078012

ABSTRACT

Endometriosis is a benign gynecological disease in which eutopic endometrial tissue composed of glands and stroma grow within the pelvic cavity. The disease affects females of reproductive age and is characterized by pelvic pain, infertility and reduced quality of life. The majority of pharmacologic treatment modalities for endometriosis focus on suppression of estradiol production and/or action; an approach associated with adverse side effects. c-MYC is elevated in eutopic endometrium and endometriotic lesion tissue in patients with endometriosis and the disease shares many similar pathological characteristics with that of endometrial carcinoma. While targeting of c-MYC with Omomyc has recently gained substantial interest in the field of cancer research, there has been no recent attempt to evaluate the potential utility in targeting c-MYC for endometriosis treatment. The following perspective article compares the similarities between endometriosis and endometrial cancer and presents preliminary data suggesting that targeting c-MYC with Omomyc reduces endometriotic cell proliferation and viability in vitro. Future application of targeting c-MYC in endometriosis treatment and potential pros and cons are then discussed.

2.
Res Sq ; 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36324807

ABSTRACT

Background: Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different ß-coronavirus E proteins. Results: We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). Conclusions: The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.

3.
Retrovirology ; 19(1): 25, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36403071

ABSTRACT

BACKGROUND: Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different ß-coronavirus E proteins. RESULTS: We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). CONCLUSIONS: The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.


Subject(s)
COVID-19 , HIV-1 , Humans , Viroporin Proteins , HIV-1/genetics , SARS-CoV-2 , Virus Replication , Amino Acids
4.
J Virol ; 95(8)2021 03 25.
Article in English | MEDLINE | ID: mdl-33536165

ABSTRACT

Previously, we showed that the presence of the herpes simplex virus type 1 (HSV-1) gD glycoprotein but not gB potently restricted HIV-1 particle infectivity. This restriction was characterized by incorporation of HSV-1 gD and the exclusion of the HIV-1 gp120/gp41 from budding virus particles. To determine the structural domains involved in gD restriction of HIV-1, a series of deletion mutants and chimeric proteins between gD and the non-restrictive gB were generated. Our results show that deletion of the cytoplasmic tail domain (CTD) of gD or that replacement of the transmembrane domain (TMD) with the TMD from gB slightly reduced restriction activity. However, replacement of the gD CTD with that of gB resulted in lower cell surface expression, significantly less incorporation into HIV-1 particles, and inefficient restriction of the release of infectious HIV-1. Analysis of gB/gD chimeric proteins revealed that removal of the gB CTD or replacement with gD CTD resulted in enhanced surface expression and an increase in restriction activity. Finally, we show that expression of gD without other HSV-1 proteins resulted in gD fractionation into detergent resistant membranes (DRM) and that gD co-localized with the raft marker GM1, which may partially explain its incorporation into budding virus particles. Taken together, our results suggest that expression of gD at the cell surface is likely a major factor but that other intrinsic properties are also involved in the gD-mediated restriction of HIV-1 particle infectivity.IMPORTANCE Previously, we showed that unlike the HSV-1, the presence of the gD glycoprotein in virus producer cells but not gB potently restricted HIV-1 particle infectivity. To better understand the relationship between cell surface expression, virus incorporation and restriction of HIV-1, we analyzed a series of deletion mutants and chimeric proteins in which domains of gD and gB were swapped. Our results indicate that: a) gD/gB chimeras having the cytoplasmic domain (CTD) of gB significantly reduced cell surface expression, release from cells, incorporation into virus, and reduced HIV-1 restriction; b) removal of the gB CTD or replacement with the gD CTD resulted in better surface expression, incorporation into HIV-1, and enhanced restriction; and c) the transmembrane domain of gB can influence transport and ultimately effect incorporation of gB into HIV-1. Overall, these data support a role for gD surface expression as crucial to restriction of infectious HIV-1 release.

SELECTION OF CITATIONS
SEARCH DETAIL
...