Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Hortic Res ; 8(1): 111, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33931626

ABSTRACT

Soil-borne plant pathogens represent a serious threat that undermines commercial walnut (Juglans regia) production worldwide. Crown gall, caused by Agrobacterium tumefaciens, and Phytophthora root and crown rots, caused by various Phytophthora spp., are among the most devastating walnut soil-borne diseases. A recognized strategy to combat soil-borne diseases is adoption of resistant rootstocks. Here, resistance to A. tumefaciens, P. cinnamomi, and P. pini is mapped in the genome of Juglans microcarpa, a North American wild relative of cultivated walnut. Half-sib J. microcarpa mother trees DJUG 31.01 and DJUG 31.09 were crossed with J. regia cv. Serr, producing 353 and 400 hybrids, respectively. Clonally propagated hybrids were genotyped by sequencing to construct genetic maps for the two populations and challenged with the three pathogens. Resistance to each of the three pathogens was mapped as a major QTL on the long arm of J. microcarpa chromosome 4D and was associated with the same haplotype, designated as haplotype b, raising the possibility that the two mother trees were heterozygous for a single Mendelian gene conferring resistance to all three pathogens. The deployment of this haplotype in rootstock breeding will facilitate breeding of a walnut rootstock resistant to both crown gall and Phytophthora root and crown rots.

2.
Hortic Res ; 6: 55, 2019.
Article in English | MEDLINE | ID: mdl-30937174

ABSTRACT

Members of the genus Juglans are monecious wind-pollinated trees in the family Juglandaceae with highly heterozygous genomes, which greatly complicates genome sequence assembly. The genomes of interspecific hybrids are usually comprised of haploid genomes of parental species. We exploited this attribute of interspecific hybrids to avoid heterozygosity and sequenced an interspecific hybrid Juglans microcarpa × J. regia using a novel combination of single-molecule sequencing and optical genome mapping technologies. The resulting assemblies of both genomes were remarkably complete including chromosome termini and centromere regions. Chromosome termini consisted of arrays of telomeric repeats about 8 kb long and heterochromatic subtelomeric regions about 10 kb long. The centromeres consisted of arrays of a centromere-specific Gypsy retrotransposon and most contained genes, many of them transcribed. Juglans genomes evolved by a whole-genome-duplication dating back to the Cretaceous-Paleogene boundary and consist of two subgenomes, which were fractionated by numerous short gene deletions evenly distributed along the length of the chromosomes. Fractionation was shown to be asymmetric with one subgenome exhibiting greater gene loss than the other. The asymmetry of the process is ongoing and mirrors an asymmetry in gene expression between the subgenomes. Given the importance of J. microcarpa × J. regia hybrids as potential walnut rootstocks, we catalogued disease resistance genes in the parental genomes and studied their chromosomal distribution. We also estimated the molecular clock rates for woody perennials and deployed them in estimating divergence times of Juglans genomes and those of other woody perennials.

3.
BMC Plant Biol ; 18(1): 137, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945553

ABSTRACT

BACKGROUND: The mountainous region between the Caucasus and China is considered to be the center of domestication for grapevine. Despite the importance of Central Asia in the history of grape growing, information about the extent and distribution of grape genetic variation in this region is limited in comparison to wild and cultivated grapevines from around the Mediterranean basin. The principal goal of this work was to survey the genetic diversity and relationships among wild and cultivated grape germplasm from the Caucasus, Central Asia, and the Mediterranean basin collectively to understand gene flow, possible domestication events and adaptive introgression. RESULTS: A total of 1378 wild and cultivated grapevines collected around the Mediterranean basin and from Central Asia were tested with a set of 20 nuclear SSR markers. Genetic data were analyzed (Cluster analysis, Principal Coordinate Analysis and STRUCTURE) to identify groups, and the results were validated by Nei's genetic distance, pairwise FST analysis and assignment tests. All of these analyses identified three genetic groups: G1, wild accessions from Croatia, France, Italy and Spain; G2, wild accessions from Armenia, Azerbaijan and Georgia; and G3, cultivars from Spain, France, Italy, Georgia, Iran, Pakistan and Turkmenistan, which included a small group of wild accessions from Georgia and Croatia. Wild accessions from Georgia clustered with cultivated grape from the same area (proles pontica), but also with Western Europe (proles occidentalis), supporting Georgia as the ancient center of grapevine domestication. In addition, cluster analysis indicated that Western European wild grapes grouped with cultivated grapes from the same area, suggesting that the cultivated proles occidentalis contributed more to the early development of wine grapes than the wild vines from Eastern Europe. CONCLUSIONS: The analysis of genetic relationships among the tested genotypes provided evidence of genetic relationships between wild and cultivated accessions in the Mediterranean basin and Central Asia. The genetic structure indicated a considerable amount of gene flow, which limited the differentiation between the two subspecies. The results also indicated that grapes with mixed ancestry occur in the regions where wild grapevines were domesticated.


Subject(s)
Vitis/genetics , Asia, Central , Crops, Agricultural/genetics , DNA, Plant/genetics , Flowers/anatomy & histology , Genetic Variation/genetics , Mediterranean Region , Phenotype , Vitis/anatomy & histology
4.
PLoS One ; 12(10): e0185974, 2017.
Article in English | MEDLINE | ID: mdl-29023476

ABSTRACT

The distribution and survival of trees during the last glacial maximum (LGM) has been of interest to paleoecologists, biogeographers, and geneticists. Ecological niche models that associate species occurrence and abundance with climatic variables are widely used to gain ecological and evolutionary insights and to predict species distributions over space and time. The present study deals with the glacial history of walnut to address questions related to past distributions through genetic analysis and ecological modeling of the present, LGM and Last Interglacial (LIG) periods. A maximum entropy method was used to project the current walnut distribution model on to the LGM (21-18 kyr BP) and LIG (130-116 kyr BP) climatic conditions. Model tuning identified the walnut data set filtered at 10 km spatial resolution as the best for modeling the current distribution and to hindcast past (LGM and LIG) distributions of walnut. The current distribution model predicted southern Caucasus, parts of West and Central Asia extending into South Asia encompassing northern Afghanistan, Pakistan, northwestern Himalayan region, and southwestern Tibet, as the favorable climatic niche matching the modern distribution of walnut. The hindcast of distributions suggested the occurrence of walnut during LGM was somewhat limited to southern latitudes from southern Caucasus, Central and South Asian regions extending into southwestern Tibet, northeastern India, Himalayan region of Sikkim and Bhutan, and southeastern China. Both CCSM and MIROC projections overlapped, except that MIROC projected a significant presence of walnut in the Balkan Peninsula during the LGM. In contrast, genetic analysis of the current walnut distribution suggested a much narrower area in northern Pakistan and the surrounding areas of Afghanistan, northwestern India, and southern Tajikistan as a plausible hotspot of diversity where walnut may have survived glaciations. Overall, the findings suggest that walnut perhaps survived the last glaciations in several refugia across a wide geographic area between 30° and 45° North latitude. However, humans probably played a significant role in the recent history and modern distribution of walnut.


Subject(s)
Genetic Variation , Juglans/genetics , Models, Genetic , Asia , Ecology , Genetics, Population , Juglans/physiology , Microsatellite Repeats , Phylogeography , Polymorphism, Genetic , Refugium
5.
Hortic Res ; 4: 17035, 2017.
Article in English | MEDLINE | ID: mdl-28791127

ABSTRACT

Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world's largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic diversity in grapes.

6.
Front Plant Sci ; 8: 476, 2017.
Article in English | MEDLINE | ID: mdl-28443103

ABSTRACT

Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of the most relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for fine mapping using Single Nucleotide Polymorphisms (SNPs) from a reference genome. In this study, GBS was used to genotype 272 seedlings of three F1 Japanese plum (Prunus salicina Lindl) progenies derived from crossing "98-99" (as a common female parent) with "Angeleno," "September King," and "September Queen" as male parents. Raw sequences were aligned to the Peach genome v1, and 42,909 filtered SNPs were obtained after sequence alignment. In addition, 153 seedlings from the "98-99" × "Angeleno" cross were used to develop a genetic map for each parent. A total of 981 SNPs were mapped (479 for "98-99" and 502 for "Angeleno"), covering a genetic distance of 688.8 and 647.03 cM, respectively. Fifty five seedlings from this progeny were phenotyped for different fruit quality traits including ripening time, fruit weight, fruit shape, chlorophyll index, skin color, flesh color, over color, firmness, and soluble solids content in the years 2015 and 2016. Linkage-based QTL analysis allowed the identification of genomic regions significantly associated with ripening time (LG4 of both parents and both phenotyping years), fruit skin color (LG3 and LG4 of both parents and both years), chlorophyll degradation index (LG3 of both parents in 2015) and fruit weight (LG7 of both parents in 2016). These results represent a promising situation for GBS in the identification of SNP variants associated to fruit quality traits, potentially applicable in breeding programs through MAS, in a highly heterozygous crop species such as Japanese plum.

7.
G3 (Bethesda) ; 6(12): 3985-3993, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27707802

ABSTRACT

The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here, we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has around seven times the genetic diversity of peach, and high genome-wide [Formula: see text] values support their status as separate species. We estimated a divergence time of ∼8 MYA (million years ago), coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of a bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together, this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application, and further the understanding of evolution in these species.


Subject(s)
Domestication , Evolution, Molecular , Genome, Plant , Genomics , Prunus dulcis/genetics , Prunus persica/genetics , Genes, Plant , Genetic Association Studies , Genetic Variation , Genetics, Population , Genomics/methods , Inbreeding , Mutation , Quantitative Trait Loci
8.
Plant J ; 87(5): 507-32, 2016 09.
Article in English | MEDLINE | ID: mdl-27145194

ABSTRACT

The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-ß-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-ß-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.


Subject(s)
Genome, Plant/genetics , Juglans/genetics , Plant Proteins/genetics , Polyphenols/metabolism , Catechol Oxidase/metabolism
9.
BMC Plant Biol ; 16(1): 122, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27230657

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not been explored. RESULTS: Pomegranate, which accumulates a large amount of anthocyanins in skin and arils, is valuable to human health, mainly because of its antioxidant properties. In this study, we developed a small RNA library from pooled RNA samples from young seedlings to mature fruits and identified both conserved and pomegranate-specific miRNA from 29,948,480 high-quality reads. For the pool of 15- to 30-nt small RNAs, ~50 % were 24 nt. The miR157 family was the most abundant, followed by miR156, miR166, and miR168, with variants within each family. The base bias at the first position from the 5' end had a strong preference for U for most 18- to 26-nt sRNAs but a preference for A for 18-nt sRNAs. In addition, for all 24-nt sRNAs, the nucleotide U was preferred (97 %) in the first position. Stem-loop RT-qPCR was used to validate the expression of the predominant miRNAs and novel miRNAs in leaves, male and female flowers, and multiple fruit developmental stages; miR156, miR156a, miR159a, miR159b, and miR319b were upregulated during the later stages of fruit development. Higher expression of miR156 in later fruit developmental may positively regulate anthocyanin biosynthesis by reducing SPL transcription factor. Novel miRNAs showed variation in expression among different tissues. These novel miRNAs targeted different transcription factors and hormone related regulators. Gene ontology and KEGG pathway analyses revealed predominant metabolic processes and catalytic activities, important for fruit development. In addition, KEGG pathway analyses revealed the involvement of miRNAs in ascorbate and linolenic acid, starch and sucrose metabolism; RNA transport; plant hormone signaling pathways; and circadian clock. CONCLUSION: Our first and preliminary report of miRNAs will provide information on the synthesis of biochemical compounds of pomegranate for future research. The functions of the targets of the novel miRNAs need further investigation.


Subject(s)
Gene Expression Regulation, Plant , Lythraceae/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Flowers/genetics , Flowers/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , High-Throughput Nucleotide Sequencing , Lythraceae/growth & development , Lythraceae/metabolism , MicroRNAs/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , RNA, Plant/metabolism , Real-Time Polymerase Chain Reaction
10.
BMC Genomics ; 16: 707, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26383694

ABSTRACT

BACKGROUND: Mutations often accompany DNA replication. Since there may be fewer cell cycles per year in the germlines of long-lived than short-lived angiosperms, the genomes of long-lived angiosperms may be diverging more slowly than those of short-lived angiosperms. Here we test this hypothesis. RESULTS: We first constructed a genetic map for walnut, a woody perennial. All linkage groups were short, and recombination rates were greatly reduced in the centromeric regions. We then used the genetic map to construct a walnut bacterial artificial chromosome (BAC) clone-based physical map, which contained 15,203 exonic BAC-end sequences, and quantified with it synteny between the walnut genome and genomes of three long-lived woody perennials, Vitis vinifera, Populus trichocarpa, and Malus domestica, and three short-lived herbs, Cucumis sativus, Medicago truncatula, and Fragaria vesca. Each measure of synteny we used showed that the genomes of woody perennials were less diverged from the walnut genome than those of herbs. We also estimated the nucleotide substitution rate at silent codon positions in the walnut lineage. It was one-fifth and one-sixth of published nucleotide substitution rates in the Medicago and Arabidopsis lineages, respectively. We uncovered a whole-genome duplication in the walnut lineage, dated it to the neighborhood of the Cretaceous-Tertiary boundary, and allocated the 16 walnut chromosomes into eight homoeologous pairs. We pointed out that during polyploidy-dysploidy cycles, the dominant tendency is to reduce the chromosome number. CONCLUSION: Slow rates of nucleotide substitution are accompanied by slow rates of synteny erosion during genome divergence in woody perennials.


Subject(s)
Genome, Plant/genetics , Juglans/genetics , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics
11.
Theor Appl Genet ; 127(11): 2433-51, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25208644

ABSTRACT

KEY MESSAGE: Wild and loss-of-function alleles of the 5 - O - glucosyltransferase gene responsible for synthesis of diglucoside anthocyanins in Vitis were characterized. The information aids marker development for tracking this gene in grape breeding. Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigmented grapes, diglucoside anthocyanins are rarely found in the cultivated grape species Vitis vinifera. Biochemically 3-O-glucoside anthocyanins can be converted into 3,5-di-O-glucoside anthocyanins by a 5-O-glucosyltransferase. In this study, we surveyed allelic variation of the 5-O-glucosyltransferase gene (5GT) in 70 V. vinifera ssp. vinifera cultivars, 52 V. vinifera ssp. sylvestris accessions, 23 Vitis hybrid grapes, and 22 accessions of seven other Vitis species. Eighteen 5GT alleles with apparent loss-of-function mutations, including seven premature stop codon mutations and six frameshift indel mutations, were discovered in V. vinifera, but not in the other Vitis species. A total of 36 5GT alleles without apparent loss-of-function mutations (W-type) were identified. These W-type alleles were predominantly present in wild Vitis species, although a few of them were also found in some V. vinifera accessions. We further evaluated some of these 5GT alleles in producing diglucoside anthocyanins by analyzing the content of diglucoside anthocyanins in a set of representative V. vinifera cultivars. Through haplotype network analysis we revealed that V. vinifera ssp. vinifera and its wild progenitor V. vinifera ssp. sylvestris shared many loss-of-function 5GT alleles and extensive divergence of the 5GT alleles was evident within V. vinifera. This work advances our understanding of the genetic diversity of 5GT and provides a molecular basis for future marker-assisted selection for improving this important wine quality trait.


Subject(s)
Anthocyanins/chemistry , Glucosyltransferases/genetics , Vitis/enzymology , Vitis/genetics , Alleles , Amino Acid Sequence , Breeding , Codon, Nonsense , Haplotypes , INDEL Mutation , Molecular Sequence Data , Vitis/classification
12.
Plant Physiol ; 164(1): 259-72, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24285849

ABSTRACT

Terroir, the unique interaction between genotype, environment, and culture, is highly refined in domesticated grape (Vitis vinifera). Toward cultivating terroir, the science of ampelography tried to distinguish thousands of grape cultivars without the aid of genetics. This led to sophisticated phenotypic analyses of natural variation in grape leaves, which within a palmate-lobed framework exhibit diverse patterns of blade outgrowth, hirsuteness, and venation patterning. Here, we provide a morphometric analysis of more than 1,200 grape accessions. Elliptical Fourier descriptors provide a global analysis of leaf outlines and lobe positioning, while a Procrustes analysis quantitatively describes venation patterning. Correlation with previous ampelography suggests an important genetic component, which we confirm with estimates of heritability. We further use RNA-Seq of mutant varieties and perform a genome-wide association study to explore the genetic basis of leaf shape. Meta-analysis reveals a relationship between leaf morphology and hirsuteness, traits known to correlate with climate in the fossil record and extant species. Together, our data demonstrate a genetic basis for the intricate diversity present in grape leaves. We discuss the possibility of using grape leaves as a breeding target to preserve terroir in the face of anticipated climate change, a major problem facing viticulture.


Subject(s)
Plant Leaves/anatomy & histology , Plant Leaves/genetics , Vitis/anatomy & histology , Vitis/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Genetic Variation , Genetics, Population , Genome-Wide Association Study , Mutation , Phenotype , RNA, Plant
13.
PLoS One ; 8(11): e78680, 2013.
Article in English | MEDLINE | ID: mdl-24236035

ABSTRACT

Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction.


Subject(s)
Genotyping Techniques , Hybridization, Genetic , Polymorphism, Single Nucleotide , Vitis/genetics , Evolution, Molecular , Gene Frequency , Genetic Markers , Genome, Plant , Genotype , Models, Genetic , Phylogeny , Plant Leaves/genetics , Principal Component Analysis , Sequence Analysis, DNA
14.
PLoS One ; 8(11): e80791, 2013.
Article in English | MEDLINE | ID: mdl-24244717

ABSTRACT

The genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of approximately 60 species from across the northern hemisphere. It is the world's most valuable horticultural crop with ~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection using genome-wide polymorphism data. We find that grape breeders have backcrossed to both the domesticated V. vinifera and wild Vitis species and that reasonably accurate genome-wide ancestry estimation can be performed on interspecific Vitis hybrids using a panel of fewer than 50 ancestry informative markers (AIMs). We compare measures of ancestry informativeness used in selecting SNP panels for two-way admixture estimation, and verify the accuracy of our method on simulated populations of admixed offspring. Our method of ancestry deconvolution provides a first step towards selection at the seed or seedling stage for desirable admixture profiles, which will facilitate marker-assisted breeding that aims to introgress traits from wild Vitis species while retaining the desirable characteristics of elite V. vinifera cultivars.


Subject(s)
Genome, Plant/genetics , Vitis/genetics , Principal Component Analysis , Vitis/classification
15.
BMC Genomics ; 13: 354, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22849334

ABSTRACT

BACKGROUND: A genome-wide set of single nucleotide polymorphisms (SNPs) is a valuable resource in genetic research and breeding and is usually developed by re-sequencing a genome. If a genome sequence is not available, an alternative strategy must be used. We previously reported the development of a pipeline (AGSNP) for genome-wide SNP discovery in coding sequences and other single-copy DNA without a complete genome sequence in self-pollinating (autogamous) plants. Here we updated this pipeline for SNP discovery in outcrossing (allogamous) species and demonstrated its efficacy in SNP discovery in walnut (Juglans regia L.). RESULTS: The first step in the original implementation of the AGSNP pipeline was the construction of a reference sequence and the identification of single-copy sequences in it. To identify single-copy sequences, multiple genome equivalents of short SOLiD reads of another individual were mapped to shallow genome coverage of long Sanger or Roche 454 reads making up the reference sequence. The relative depth of SOLiD reads was used to filter out repeated sequences from single-copy sequences in the reference sequence. The second step was a search for SNPs between SOLiD reads and the reference sequence. Polymorphism within the mapped SOLiD reads would have precluded SNP discovery; hence both individuals had to be homozygous. The AGSNP pipeline was updated here for using SOLiD or other type of short reads of a heterozygous individual for these two principal steps. A total of 32.6X walnut genome equivalents of SOLiD reads of vegetatively propagated walnut scion cultivar 'Chandler' were mapped to 48,661 'Chandler' bacterial artificial chromosome (BAC) end sequences (BESs) produced by Sanger sequencing during the construction of a walnut physical map. A total of 22,799 putative SNPs were initially identified. A total of 6,000 Infinium II type SNPs evenly distributed along the walnut physical map were selected for the construction of an Infinium BeadChip, which was used to genotype a walnut mapping population having 'Chandler' as one of the parents. Genotyping results were used to adjust the filtering parameters of the updated AGSNP pipeline. With the adjusted filtering criteria, 69.6% of SNPs discovered with the updated pipeline were real and could be mapped on the walnut genetic map. A total of 13,439 SNPs were discovered by BES re-sequencing. BESs harboring SNPs were in 677 FPC contigs covering 98% of the physical map of the walnut genome. CONCLUSION: The updated AGSNP pipeline is a versatile SNP discovery tool for a high-throughput, genome-wide SNP discovery in both autogamous and allogamous species. With this pipeline, a large set of SNPs were identified in a single walnut cultivar.


Subject(s)
Algorithms , Chromosome Mapping/methods , Genome, Plant , Genotyping Techniques , Juglans/genetics , Polymorphism, Single Nucleotide , Chromosomes, Artificial, Bacterial , Expressed Sequence Tags , Genome-Wide Association Study , Open Reading Frames , Pollination/physiology , Sequence Analysis, DNA
16.
Plant Mol Biol ; 78(1-2): 95-107, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22101470

ABSTRACT

Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , DNA, Plant/genetics , Genome, Plant/genetics , Juglans/genetics , Sequence Analysis, DNA/methods , Base Sequence , DNA, Plant/chemistry , Expressed Sequence Tags , Genetic Markers/genetics , Genomic Library , Microsatellite Repeats/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Plant Proteins/genetics , Retroelements/genetics , Sequence Homology, Nucleic Acid , Short Interspersed Nucleotide Elements/genetics
17.
Proc Natl Acad Sci U S A ; 108(9): 3530-5, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21245334

ABSTRACT

The grape is one of the earliest domesticated fruit crops and, since antiquity, it has been widely cultivated and prized for its fruit and wine. Here, we characterize genome-wide patterns of genetic variation in over 1,000 samples of the domesticated grape, Vitis vinifera subsp. vinifera, and its wild relative, V. vinifera subsp. sylvestris from the US Department of Agriculture grape germplasm collection. We find support for a Near East origin of vinifera and present evidence of introgression from local sylvestris as the grape moved into Europe. High levels of genetic diversity and rapid linkage disequilibrium (LD) decay have been maintained in vinifera, which is consistent with a weak domestication bottleneck followed by thousands of years of widespread vegetative propagation. The considerable genetic diversity within vinifera, however, is contained within a complex network of close pedigree relationships that has been generated by crosses among elite cultivars. We show that first-degree relationships are rare between wine and table grapes and among grapes from geographically distant regions. Our results suggest that although substantial genetic diversity has been maintained in the grape subsequent to domestication, there has been a limited exploration of this diversity. We propose that the adoption of vegetative propagation was a double-edged sword: Although it provided a benefit by ensuring true breeding cultivars, it also discouraged the generation of unique cultivars through crosses. The grape currently faces severe pathogen pressures, and the long-term sustainability of the grape and wine industries will rely on the exploitation of the grape's tremendous natural genetic diversity.


Subject(s)
Crops, Agricultural/genetics , Crops, Agricultural/history , Vitis/genetics , Clone Cells , Haplotypes/genetics , History, Ancient , Linkage Disequilibrium/genetics , Pedigree , Phylogeny , Population Dynamics , Principal Component Analysis , Seeds/genetics , United States , United States Department of Agriculture
18.
Genetica ; 138(6): 681-94, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20217187

ABSTRACT

One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (H (G) /H (T) = 0.853; 85.3%) and the among groups within total component (G (GT) = 0.147) accounted for the remaining 14.7%, of which approximately 64% accounted for among groups within clusters (G (GC) = 0.094) and approximately 36% among clusters (G (CT) = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and approximately 10% among groups within clusters, and approximately 3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig.


Subject(s)
Ficus/genetics , Genetic Variation , Alleles , Ficus/classification , Genes, Plant , Microsatellite Repeats , Phylogeny , Population Dynamics
19.
Am J Bot ; 97(4): 660-71, 2010 Apr.
Article in English | MEDLINE | ID: mdl-21622428

ABSTRACT

Walnuts are a major crop of many countries and mostly cultivated in large-scale plantations with few cultivars. Landraces provide important genetic reservoirs; thus, understanding factors influencing the geographic distribution of genetic variation in crop resources is a fundamental goal of agrobiodiversity conservation. Here, we investigated the role of human settlements and kinship on genetic variation and population structure of two walnut species: Juglans regia, an introduced species widely cultivated for its nuts, and J. sigillata, a native species cultivated locally in Yunnan. The objectives of this study were to characterize sympatric populations of J. regia and J. sigillata using 14 molecular markers and evaluate the role of Tibetan villages and kin groups (related households) on genotypic variation and population structure of J. regia and J. sigillata. Our results based on 220 walnut trees from six Tibetan villages show that although J. regia and J. sigillata are morphologically distinct, the two species are indistinguishable based on microsatellite data. Despite the lack of interspecific differences, AMOVAs partitioned among villages (5.41%, P = 0.0068) and kin groups within villages (3.34%, P = 0.0068) showed significant genetic variation. These findings suggest that village environments and familial relationships are factors contributing to the geographic structure of genetic variation in Tibetan walnuts.

20.
J Agric Food Chem ; 55(20): 8105-11, 2007 Oct 03.
Article in English | MEDLINE | ID: mdl-17715894

ABSTRACT

Accumulation of bioactive compounds and storage components during developmental stages of mango ginger ( Curcuma amada Roxb.) rhizome was investigated from 60 to 240 days, as a function of physiological maturity. Four distinct developmental phases were defined, namely, vegetative phase (up to 60 days from planting), initiation and development phase (60-150 days), maturation phase (150-180 days), and senescence phase (180 days). Difurocumenonol, a bioactive terpenoid compound and phenolics were identified as biomarkers, to determine the optimum physiological maturity to harvest mango ginger rhizome. Accumulation of phenolics was observed in newly initiated rhizomes (after 60 days from planting). The phenolic content was high in mango ginger pulp compared to its juice. Newly initiated rhizome contained no difurocumenonol, and it was observed after 120 days after planting. Peak accumulation of phenolics, difurocumenonol, and total protein were noticed in 180 day old rhizome. Accordingly, the abundance of these components on 180 days was set as an optimum maturity standard for harvest of mango ginger rhizome, compared with a conventional harvest period that ranges from 200 to 240 days.


Subject(s)
Curcuma/chemistry , Curcuma/growth & development , Phenols/analysis , Rhizome/chemistry , Rhizome/growth & development , Terpenes/analysis , Benzofurans/analysis , Benzofurans/pharmacology , Cyclodecanes/analysis , Cyclodecanes/pharmacology , Plant Proteins/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...