Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38740693

ABSTRACT

Linagliptin is hydrophilic antidiabetic with poor oral bioavailability due to poor permeability and pre-systemic metabolism. The objective was to assess w/o microemulsion for enhanced oral bioavailability of linagliptin. Nigella oil was used as oily phase based on its reported antidiabetic effect. Isopropyl myristate (IPM) or capryol were combined with nigella oil to impart intestinal membrane permeabilizing abilities. Pseudoternary phase diagrams were constructed utilizing nigella oil in presence and absence of isopropyl myristate or capryol as oily phase using Tween 60 as surfactant. W/O microemulsion formulations were selected from the constructed phase diagrams and linagliptin was loaded in the internal aqueous phase at a concentration of 0.5 mg/ml. The prepared formulations were physically evaluated and linagliptin in vitro release was monitored. Eventually, the in vivo hypoglycemic effect was assessed using diabetic rats. The developed microemulsions were of w/o type and exhibited Newtonian flow behavior with nigella/capryol microemulsion recording the lowest viscosity. The recorded droplet size values were 104.9, 121.2 and 86.4 nm for nigella, nigella/IPM and nigella/capryol microemulsions, respectively. All microemulsion formulations showed slower drug release rate compared with aqueous suspension with nigella/capryol microemulsion showing the highest release rate compared to other microemulsions. Release data from microemulsion best fitted to Higuchi model. In vivo oral hypoglycemic activity measurement reflected a more intensified hypoglycemic effect with rapid onset after oral ingestion of microemulsion compared to linagliptin dispersion. Nigella oil/IPM-based microemulsion was ranked as the most effective. The investigation highlighted the feasibility of w/o microemulsion for enhanced oral bioavailability of hydrophilic drugs like linagliptin.

2.
Pharm Dev Technol ; 28(9): 811-825, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788184

ABSTRACT

The aim was to investigate eutectic transition during tableting and storage. Mixtures of lidocaine and series of NSAIDs with increasing melting point were used as model systems to guide formulators to scaleup eutectic forming materials gaining enhanced dissolution while avoiding deleterious physical changes. Physical mixtures of NSAIDs with lidocaine were prepared at eutectic forming ratio. These were directly compressed, dry co-ground before compression, or compressed after wet granulation. Dissolution of tablets was compared to corresponding dry co-ground mixture. Thermograms of direct compressed tablet were compared to co-ground mixture and pure compound. Stability of direct compressed tablets was assessed. Tableting initiated eutexia which enhanced dissolution of NSAIDs. Eutexia was associated with tablet softening in case of low melting point ketoprofen and aceclofenac. Wet granulation hastened eutexia developing unacceptable tablet in case ketoprofen and aceclofenac. Tablets prepared by direct compression of physical mixtures underwent gradual eutectic transition upon storage with the magnitude of eutectic transition reducing with increased melting point of NSAIDs. Ketoprofen was physically unstable but aceclofenac degraded chemically as well. Tenoxicam and meloxicam tablets were physically and chemically stable. Direct compression after physical mixing is the best tableting technique, but low melting point drugs should consider different strategy before compression.


Subject(s)
Diclofenac/analogs & derivatives , Ketoprofen , Ketoprofen/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Tablets , Lidocaine , Solubility
3.
AAPS PharmSciTech ; 24(6): 167, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37552329

ABSTRACT

Solid lipid nanoparticles (SLnPs) are usually utilized as lipid-based formulations for enhancing oral bioavailability of BCS class IV drugs. Accordingly, the objective of this work was to investigate the effect of formulation and processing variables on the properties of the developed SLnPs for oral delivery of apixaban. Randomized full factorial design (24) was employed for optimization of SLnPs. With two levels for each independent variable, four factors comprising both formulations and processing factors were chosen: the GMS content (A), the Tween 80 content (B), the homogenization time (C), and the content of poloxamer 188 used (D). The modified hot homogenization and sonication method was employed in the formulation of solid lipid nanoparticles loaded with apixaban (APX-SLnPs). The size of APX-SLnPs formulations was measured to lie between 116.7 and 1866 nm, polydispersity index ranged from 0.385 to 1, and zeta potential was discovered to be in the range of - 12.6 to - 38.6 mV. The entrapping efficiency of APX-SLnPs formulations was found to be in the range of 22.8 to 96.7%. The optimized formulation was evaluated in vivo after oral administration to rats. Oral administration of APX-SLnPs resulted in significant prolongation in bleeding time compared with both positive and negative control. This indicates the ability of this system to enhance drug therapeutic effect either by increasing intestinal absorption or trans-lymphatic transport. So, this study highlighted the capability of SLnPs to boost the pharmacological effect of apixaban.


Subject(s)
Lipids , Nanoparticles , Rats , Animals , Liposomes , Particle Size , Drug Carriers
4.
Int J Pharm ; 638: 122912, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37015296

ABSTRACT

The goal was to scrutinize niosomes as potential carriers for enhanced efficacy of norfloxacin against Toxoplasma gondii RH strain. This was assessed in vitro and in vivo. Standard niosomes of Span 60 and cholesterol were prepared. Gelucire 48/16 or Tween 80 was incorporated as hydrophilic fluidizer. The prepared vesicles were characterized for shape, size, viscosity and norfloxacin release. The in vitro anti-Toxoplasma was assessed by monitoring tachyzoites viability after incubation with niosomes. In vivo efficacy of niosomes encapsulated norfloxacin was evaluated on infected mice. Transmission electron micrographs showed nano-sized spherical vesicles. Norfloxacin release varied with niosomal composition to show faster liberation in presence of fluidizing agent. The half maximum effective concentration of norfloxacin against tachyzoites (EC50) was significantly reduced after niosomal encapsulation compared with simple drug solution with no significant difference between vesicular formulations. Tachyzoite count in the peritoneal fluid of infected mice was reduced by 45.2, 90.8, 88.3 and 84% after treatment with simple drug dispersion, standard niosomes, Gelucire containing and Tween containing vesicles, respectively compared to infected untreated mice. These results correlate with the in vitro data and reflects the efficacy of niosomes. The study introduced surfactant vesicles as a tool for enhanced efficacy of norfloxacin against toxoplasma.


Subject(s)
Liposomes , Surface-Active Agents , Mice , Animals , Norfloxacin/pharmacology , Polysorbates , Drug Compounding , Particle Size
5.
Drug Dev Ind Pharm ; 48(12): 717-726, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36546677

ABSTRACT

BACKGROUND: Eslicarbazepine acetate (ESL) is antiepileptic agent which is approved for use as single therapy or in combination with other drugs. However, it suffers from poor oral bioavailability. Modulation of drug crystallinity can be utilized as an approach for enhancing drug dissolution. OBJECTIVE: Accordingly, the aim of this study was to investigate possible eutectic system formation between eslicarbazepine with either tartaric acid or citric acid. METHODOLOGY: Eslicarbazepine acetate was subjected to wet co-grinding with tartaric acid or citric acid at different molar ratios. The prepared formulations were assessed using Fourier-transform infrared (FTIR), X-ray powder diffraction (XRPD), differential scanning calorimetry in addition to dissolution studies. RESULTS: The characterization techniques confirmed eutectic system formation with tartaric and citric acid with the optimum molar ratio for eutexia being 1:1 for both substances. Development of eutectic systems significantly enhanced the dissolution rate of ESL. Increasing the ratio of tartaric acid higher than the optimum ratio for eutexia resulted in additional increase in drug dissolution rate. This suggested the impact of pH modification on drug dissolution rate. The enhanced dissolution rate in case of the formulations containing ESL and citric acid was accredited to combined effect of eutaxia and pH modulation. These explanations were proven from investigating the dissolution rate of the physical mixtures which were inferior in their dissolution rate compared with the prepared formulations. CONCLUSION: co-processing of ESL with either citric acid or tartaric acid resulted in hastened dissolution rate which was accredited to combined effect of eutexia with pH modification.


Subject(s)
Citric Acid , Depression , Solubility , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared/methods , Calorimetry, Differential Scanning
6.
AAPS PharmSciTech ; 24(1): 1, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36417044

ABSTRACT

The aim of this study was to develop microemulsion (ME) formulation with possible phase transition into liquid crystals upon ocular application to enhance acetazolamide bioavailability. Pseudoternary phase diagrams were constructed using olive oil or castor oil (oily phase), Tween 80 (surfactant), and sodium carbonate solution (aqueous phase). Microemulsion and liquid crystal (LC) formulations were selected from the constructed phase diagrams and were evaluated for rheological properties and in vitro drug release. The efficacy of the developed formulations in reducing intraocular pressure (IOP) was assessed in vivo. In vitro release study showed slower release rate from LC and ME compared with drug solution with the release from LC being the slowest. Ocular application of acetazolamide ME formulations or aqueous solution resulted in significant reduction in IOP from baseline. The recorded Tmax values indicated faster onset of action for acetazolamide aqueous solution (1 h) compared with ME systems (3 h). However, the duration of action was prolonged and the reduction in IOP continued for up to 10 h in case of MEs, while that of aqueous solution was only for 4-5 h. The study suggested ME formulations for ocular delivery of acetazolamide with enhanced efficacy and prolonged duration of action.


Subject(s)
Acetazolamide , Glaucoma , Humans , Acetazolamide/therapeutic use , Emulsions/chemistry , Phase Transition , Eye , Water/chemistry , Glaucoma/drug therapy
7.
J Drug Deliv Sci Technol ; 74: 103587, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35845293

ABSTRACT

Lopinavir is an antiretroviral, antiparasitic agent and recently utilized in treatment of COVID-19. Unfortunately, lopinavir exhibited poor oral bioavailability due to poor dissolution, extensive pre-systemic metabolism, and significant P-glycoprotein intestinal efflux. Accordingly, the aim was to enhance dissolution rate and intestinal absorption of lopinavir. This employed co-processing with menthol which is believed to modify crystalline structures and inhibit intestinal efflux. Lopinavir was mixed with menthol at different molar ratios before ethanol assisted kneading. Formulations were evaluated using FTIR spectroscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and dissolution studies. Optimum ratio was utilized to assess lopinavir intestinal permeability. This employed in situ rabbit intestinal perfusion technique. FTIR, DSC and XRD indicated formation of lopinavir-menthol co-crystals at optimum molar ratio of 1:2. Additional menthol underwent phase separation due to possible self-association. Co-crystallization significantly enhanced lopinavir dissolution rate compared with pure drug to increase the dissolution efficiency from 24.96% in case of unprocessed lopinavir to 91.43% in optimum formulation. Lopinavir showed incomplete absorption from duodenum and jejuno-iliac segments with lower absorptive clearance from jejuno-ileum reflecting P-gp efflux. Co-perfusion with menthol increased lopinavir intestinal permeability. The study introduced menthol as co-crystal co-former for enhanced dissolution and augmented intestinal absorption of lopinavir.

8.
Parasitol Res ; 120(7): 2641-2658, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33945012

ABSTRACT

Ivermectin (IVM) is one of the competitive treatments used for trichinellosis. However, several studies linked its efficacy with early diagnosis and administration to tackle the intestinal phase with limited activity being recorded against encysted larvae. The aim of this study was to employ niosomes for enhancing effectiveness of oral IVM against different stages of Trichinella spiralis (T. spiralis) infection with reference to nano-crystalline IVM. Mice were randomized into four groups: group Ι, 15 uninfected controls; group ΙΙ, 30 infected untreated controls; group ΙΙΙ, 30 infected nano-crystalline IVM treated, and group ΙV, 30 infected niosomal IVM treated. All groups were equally subdivided into 3 subgroups; (a) treated on the 1st day post infection (dpi), (b) treated on the 10th dpi, and (c) treated on the 30th dpi. Assessment was done by counting adult worms and larvae plus histopathological examination of jejunum and diaphragm. Biochemical assessment of oxidant/antioxidant status, angiogenic, and inflammatory biomarkers in intestinal and muscle tissues was also performed. Both niosomes and nano-crystals resulted in significant reduction in adult and larval counts compared to the infected untreated control with superior activity of niosomal IVM. The superiority of niosomes was expressed further by reduction of inflammation in both jejunal and muscle homogenates. Biochemical parameters showed highly significant differences in all treated mice compared to infected untreated control at different stages with highly significant effect of niosomal IVM. In conclusion, niosomal IVM efficacy exceeded the nano-crystalline IVM in treatment of different phases of trichinellosis.


Subject(s)
Antiparasitic Agents/administration & dosage , Ivermectin/administration & dosage , Trichinella spiralis/drug effects , Trichinellosis/drug therapy , Animals , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/therapeutic use , Chromatography, High Pressure Liquid , Diaphragm , Inflammation/pathology , Ivermectin/pharmacology , Ivermectin/therapeutic use , Jejunum/pathology , Larva/drug effects , Liposomes , Male , Mice , Nanoparticles , Random Allocation , Trichinella spiralis/physiology , Trichinellosis/diagnosis , Zoonoses
9.
Drug Dev Ind Pharm ; 47(4): 663-672, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33826458

ABSTRACT

WHO considers praziquantel (PZQ) as the drug of choice for treatment of Schistosoma mansoni infection but this requires high dose due to poor solubility and first pass metabolism. The aim of this work was to optimize nanostructured lipid carriers (NLCs) for enhanced PZQ oral delivery. The optimization involved testing the effect of surface charge of NLCs. NLCs comprised precirol ATO as solid lipid with oleic acid, Span 60 and Tween 80 as liquid components. Dicetyl phosphate and stearyl amine were the negative and positive charging agents, respectively. NLCs were prepared by microemulsification technique and were characterized. The schistosomicidal activity of PZQ loaded NLCs was monitored in vitro and in vivo using infected mice. PZQ showed high entrapment efficiency in all types of NLCs (ranged from 93.97 to 96.29%) with better PZQ loading in standard NLCs. This was clarified by thermal analysis which reflected displacement of PZQ by charging agents. In vitro schistosomicidal study revealed the superiority of PZQ loaded positively charged NLCs (LC50 and LC95 equal 0.147 and 0.193 µg/ml respectively) with traditional and negatively charged NLCs being inferior to simple PZQ solution after short incubation period. Scanning electron micrographs showed that PZQ loaded positively charged NLCs resulted in more intense ultrastructural changes in worms. The superiority of positively charged NLCs was confirmed by in vivo assessment as they showed better improvement in histopathological features of the liver of the infected mice compared with other formulations. The study introduced positively charged NLCs as promising carriers for oral delivery of PZQ.


Subject(s)
Nanostructures , Schistosomicides , Animals , Drug Carriers , Lipids , Mice , Praziquantel/pharmacology , Schistosomicides/pharmacology
10.
AAPS PharmSciTech ; 22(2): 59, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33517486

ABSTRACT

Development of fixed dose combinations is growing and many of these drug combinations are being legally marketed. However, the development of these requires careful investigation of possible physicochemical changes during co-processing. This requires investigation of the effect of co-processing of drug combination in absence of excipients to maximize the chance of interaction (if any). Accordingly, the aim was to investigate the effect of co-processing of ezetimibe and atorvastatin on drugs dissolution rate. The objective was extended to in vitro in vivo correlation. Drugs were subjected to wet co-processing in presence of ethanol after being mixed at different ratios. The prepared formulations were characterized using FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and in vitro dissolution testing. These investigations proved the possibility of eutectic system formation after drugs co-processing. This was reflected on drugs dissolution rate which was significantly enhanced at dose ratio and 2:1 atorvastatin:ezetimibe molar ratio compared to the corresponding pure drugs. In vivo antihyperlipidemic effects of the co-processed drugs were monitored in albino mice which were subjected to hyperlipidemia induction using poloxamer 407. The results showed significant enhancement in pharmacological activity as revealed from pronounced reduction in cholesterol level in mice administering the co-processed form of both drugs. Besides, histopathological examinations of the liver showed marked decrease in hepatic vacuolation. In conclusion, co-processing of atorvastatin with ezetimibe resulted in beneficial eutexia which hastened the dissolution rate and pharmacological effects of both drugs.Graphical abstract.


Subject(s)
Anticholesteremic Agents/administration & dosage , Atorvastatin/administration & dosage , Ezetimibe/administration & dosage , Animals , Anticholesteremic Agents/pharmacology , Atorvastatin/chemistry , Atorvastatin/pharmacology , Drug Combinations , Drug Liberation , Ezetimibe/chemistry , Ezetimibe/pharmacology , Male , Mice
11.
Curr Drug Deliv ; 17(10): 861-873, 2020.
Article in English | MEDLINE | ID: mdl-32640957

ABSTRACT

Cancers are life threatening diseases and their traditional treatment strategies have numerous limitations which include poor pharmacokinetic profiles, non-specific drug distribution in the body tissues and organs and deprived tumor cells penetration. This attracted the attention of researchers to tailor efficient drug delivery system for anticancer agents to overcome these limitations. Liposomes are one of the newly developed delivery systems for anticancer agents. They are vesicular structures, which were fabricated to enhance drug targeting to tumor tissues either via active or passive targeting. They can be tailored to penetrate tumor cells membrane which is considered the main rate limiting step in antineoplastic therapy. This resulted in enhancing drug cellular uptake and internalization and increasing drug cytotoxic effect. These modifications were achieved via various approaches which included the use of cell-penetrating peptides, the use of lipid substances that can increase liposome fusogenic properties or increase the cell membrane permeability toward amphiphilic drugs, surface modification or ligand targeted liposomes and immuno-liposomes. The modified liposomes were able to enhance anticancer agent's cellular uptake and this was reflected in their ability to destroy tumor tissues. This review outlines different approaches employed for liposomes modification for enhancing anticancer agent's cellular uptake.


Subject(s)
Antineoplastic Agents , Cell-Penetrating Peptides , Drug Delivery Systems , Liposomes , Antineoplastic Agents/administration & dosage , Biological Transport , Cell Line, Tumor , Humans
12.
Carbohydr Polym ; 232: 115826, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31952620

ABSTRACT

The study investigated chitosan coated nanostructured lipid carriers (NLCs) for oral delivery of albendazole in treatment of trichinellosis. NLCs comprised precirol and oleic acid with Tween and Span 80. Dicetylphosphate was used as charging agent to allow chitosan coating. Trichinella spiralis infected mice were used and albendazole suspension, coated or uncoated NLCs were orally administered at different stages of infection. NLCs were spherical with size of 188 and 200 nm for coated and uncoated NLC, respectively. Treatment during intestinal phase reduced worm count with NLCs showing better rank. This was reflected further by reduced larvae count and improved histopathological features. Starting treatment in the migrating phase reduced larval count by 62.9, 99.6 and 89.5 % after administration of suspension, coated and uncoated NLCs, respectively. The same rank was recorded for the encysted phase. NLCs enhanced the efficacy of albendazole against Trichinella spiralis compared with suspension with chitosan coated NLCs being superior.


Subject(s)
Albendazole/pharmacology , Antiprotozoal Agents/pharmacology , Chitosan/chemistry , Lipids/chemistry , Nanostructures/chemistry , Trichinella spiralis/drug effects , Administration, Oral , Albendazole/administration & dosage , Albendazole/chemistry , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Chitosan/administration & dosage , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Lipids/administration & dosage , Nanostructures/administration & dosage , Parasitic Sensitivity Tests , Particle Size , Surface Properties
13.
Pharm Dev Technol ; 23(5): 454-463, 2018 Jun.
Article in English | MEDLINE | ID: mdl-27681386

ABSTRACT

Dissolution enhancement is a promising strategy for improving drug bioavailability. Co-crystallization of drugs with inert material can help in this direction. The benefit will become even greater if the inert material can form co-crystal while maintaining its main function as excipient. Accordingly, the objective of the current study was to investigate xylitol as a potential co-crystal co-former for felodipine with the goal of preparing felodipine sublingual tablets. Co-crystallization was achieved by wet co-grinding of the crystals deposited from methanolic solutions containing felodipine with increasing molar ratios of xylitol (1:1, 1:2 and 1:3). The developed co-crystals were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) before monitoring drug dissolution. These results reflected the development of new crystalline species depending on the relative proportions of felodipine and xylitol with complete co-crystallization of felodipine being achieved in the presence of double its molar concentration of xylitol. This co-crystal formulation was compressed into sublingual tablet with ultrashort disintegration time with subsequent fast dissolution. Co-crystal formation was associated with enhanced dissolution with the optimum formulation producing the fastest dissolution rate. In conclusion, xylitol can be considered as a co-crystal co-former for enhanced dissolution rate of drugs.


Subject(s)
Anti-Arrhythmia Agents/chemistry , Excipients/chemistry , Felodipine/chemistry , Xylitol/chemistry , Administration, Oral , Anti-Arrhythmia Agents/administration & dosage , Calorimetry, Differential Scanning , Crystallization , Drug Liberation , Felodipine/administration & dosage , Solubility , Spectroscopy, Fourier Transform Infrared , Tablets , X-Ray Diffraction
14.
Drug Dev Ind Pharm ; 42(8): 1225-33, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26555927

ABSTRACT

Development of oral disintegrating tablets requires enhancement of drug dissolution and selection of sweetener. Co-crystallization of drugs with inert co-former is an emerging technique for enhancing dissolution rate. The benefit of this technique will become even greater if one of the sweeteners can act as co-crystal co-former to enhance dissolution and mask the taste. Accordingly, the objective of this work was to investigate the efficacy of sucralose as a potential co-crystal co-former for enhancing the dissolution rate of hydrochlorothiazide. This was extended to prepare oral disintegrating tablets. Co-crystallization was achieved after dissolving hydrochlorothiazide with increasing molar ratios of sucralose in the least amount of acetone. The co-crystallization products were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and powder X-ray diffraction. These measurements indicated that co-crystallization process started at a drug sucralose molar ratio of 1:1 and completed at 1:2. The developed co-crystals exhibited faster drug dissolution compared with the control, with co-crystal containing the drug with sucralose at 1:2 molar ratio being optimum. The later was used to prepare fast disintegrating tablets. These tablets had acceptable physical characteristics and showed fast disintegration with subsequent rapid dissolution. The study introduced sucralose as co-crystal co-former for enhanced dissolution and masking the taste.


Subject(s)
Hydrochlorothiazide/chemistry , Sucrose/analogs & derivatives , Tablets/chemistry , Administration, Oral , Chemistry, Pharmaceutical , Crystallization , Drug Carriers/chemistry , Drug Liberation/physiology , Excipients/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared/methods , Sucrose/chemistry , Taste , X-Ray Diffraction/methods
15.
Int J Pharm ; 478(2): 773-8, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25529436

ABSTRACT

Co-crystallization of drugs with benign co-formers is promising for enhancing dissolution rate of poorly soluble drugs. The selection of safe and pharmacologically inert co-formers is a critical step in this process. Accordingly, the objective of this work was to investigate aerosil 200 as a potential co-former for the preparation of hydrochlorothiazide co-crystal. Co-crystal formation involved acetone assisted co-grinding after mixing hydrochlorothiazide with increasing molar ratios of aerosil (1:1, 1:2 and 1:4). The prepared formulations were subjected to Fourier transform infrared spectroscopy, differential thermal analysis, and powder X-ray diffraction studies. These investigations provided evidence for co-crystal formation between the drug and aerosil. Complete co-crystallization was even achieved at the lowest tested concentration of aerosil suggesting that the stoichiometric ratio of co-crystal formation is 1:1 molar ratio. The dissolution studies revealed faster dissolution rate of the drug from co-crystals compared to the pure unprocessed drug or that which was subjected to wet grinding in absence of aerosil. Increasing the molar ratio of aerosil increased the amount dissolved in the first 5 min. This may be attributed to adsorption of the formed co-crystal on the surface of excess aerosil. In conclusion, aerosil can be considered as co-crystal co-former with potential future application.


Subject(s)
Antihypertensive Agents/chemistry , Hydrochlorothiazide/chemistry , Silicon Dioxide/chemistry , Adsorption , Crystallization , Solubility
16.
Drug Dev Ind Pharm ; 40(12): 1637-44, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24093429

ABSTRACT

This study investigated simultaneous transdermal delivery of indomethacin and benzocaine from microemulsion. Eucalyptus oil based microemulsion was used with Tween 80 and ethanol being employed as surfactant and cosurfactant, respectively. A microemulsion formulation comprising eucalyptus oil, polyoxyethylene sorbitan momooleate (Tween 80), ethanol and water (20:30:30:20) was selected. Indomethacin (1% w/w) and benzocaine (20% w/w) were incorporated separately or combined into this formulation before in vitro and in vivo evaluation. Application of indomethacin microemulsion enhanced the transdermal flux and reduced the lag time compared to saturated aqueous control. The same trend was evident for benzocaine microemulsion. Simultaneous application of the two drugs in microemulsion provided similar enhancement pattern. The in vivo evaluation employed the pinprick method and revealed rapid anesthesia after application of benzocaine microemulsion with the onset being 10 min and the action lasting for 50 min. For indomethacin microemulsion, the analgesic effect was recorded after 34.5 min and lasted for 70.5 min. Simultaneous application of benzocaine and indomethacin provided synergistic effect. The onset of action was achieved after 10 min and lasted for 95 min. The study highlighted the potential of microemulsion formulation in simultaneous transdermal delivery of two drugs.


Subject(s)
Benzocaine/administration & dosage , Emulsions/administration & dosage , Indomethacin/administration & dosage , Skin Absorption/drug effects , Administration, Cutaneous , Animals , Benzocaine/metabolism , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Emulsions/metabolism , Humans , Indomethacin/metabolism , Organ Culture Techniques , Rabbits , Skin Absorption/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...