Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Int J Pharm X ; 6: 100219, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38076489

ABSTRACT

Enterococcus faecalis plays the key role in endodontic infections and is responsible for the formation of biofilm on dentin, which causes a resistance against periradicular lesions treatment, consequently the aim of this study is to use nanoparticles entrapping anibacterial agents coated with chitosan that in authors previous study showed a successful in vitro biofilm inhibition, additionally incorporated in thermoresponsive gel.to benefit nanoparticles` small size, and the positive charge of their surfaces that binds with the negatively charged surface of bacterial cell causing its destruction, in addition to the sustained release pattern of the drug based nanoparticles in gel. Therefore, Ciprofloxacin hydrochloride (CIP) encapsulated in PLGA nanoparticles coated with chitosan (CIP-CS-PLGA-NPs), in addition to free CIP, were incorporated in Pluronic® 407/188 to form thermosensitive gels (F1) and (F2), respectively. The thermosensitive gels were tested with regards to rheology, gelling temperature and the release pattern of the drug. A clinical study of the efficacy of F1 and F2 as antibacterial treatments was conducted on patients followed by a comparative studies against CIP and Ca(OH)2 pastes in terms of biofilm inhibition assay and total bacterial reduction count and percent.The results revealed that F1 and F2 exhibited gelation temperature of 36.9 ± 0.3 °C and 36.0 ± 0.4 °C, viscosity was 15,000 ± 360.6 and 7023.3 ± 296.8 cP respectively. The cumulative release of F1 and F2 after 72 h was 50.03% ± 0.7345 and 77.98% ± 3.122 respectively. F1 was the most efficient treatment against recurrent E.faecalis infection in endodontics that was evident by the highest total bacterial reduction count and percent and biofilm inhibition percent that were recorded in the group treated with F1followed by the group treated with F2. Nanocarriers succeeded in carrying the drug deeply in the root canal and sustaining its effect to abolish the obstinate E. faecalis recurrent infection and its biofilm formation.

2.
Drug Deliv ; 29(1): 1726-1742, 2022 12.
Article in English | MEDLINE | ID: mdl-35635314

ABSTRACT

Gold nanoparticles are a promising drug delivery system for treatment of inflammatory skin conditions, including psoriasis, due to their small size and anti-inflammatory properties. The aim of this study was to conjugate gold nanoparticles with anti-psoriatic formulations that previously showed successful results in the treatment of psoriasis (tacrolimus-loaded chitosan nanoparticles and lecithin-chitosan nanoparticles) by virtue of their surface charges, then examine whether the hybridization with gold nanoparticles would enhance the anti-psoriatic efficacy in vivo. Successful formation of gold nanoparticles was examined by elemental mapping and selected area electron diffraction (SAED). Hybrid conjugates were examined in terms of particle size and zeta potential by dynamic light scattering (DLS). Morphological features were captured by transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis was conducted, as well. All characterization was conducted for the conjugated nanoparticles and compared with their bare counterparts. The in vivo results on imiquimod (IMQ)-induced mouse model showed promising anti-psoriatic effects upon application of gold conjugated tacrolimus-loaded lecithin-chitosan hybrid nanoparticles with a significant difference from the bare hybrid nanoparticles in some of the inflammatory markers. The anti-inflammatory effect of the gold conjugate was also evident by a lower spleen to body weight ratio and a better histopathological skin condition compared to other tested formulations.


Subject(s)
Chitosan , Metal Nanoparticles , Psoriasis , Animals , Anti-Inflammatory Agents/pharmacology , Gold , Lecithins , Mice , Psoriasis/drug therapy , Tacrolimus
3.
Sci Rep ; 11(1): 20197, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642396

ABSTRACT

Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.


Subject(s)
Anthracenes/adverse effects , Antineoplastic Agents, Phytogenic/administration & dosage , Carcinoma, Squamous Cell/drug therapy , Flavones/administration & dosage , MicroRNAs/genetics , Piperidines/adverse effects , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Drug Carriers/chemistry , Drug Compounding , Flavones/chemistry , Flavones/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Male , Mice , Particle Size , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Xenograft Model Antitumor Assays
4.
Drug Deliv ; 28(1): 2160-2176, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34623203

ABSTRACT

The aim of this work is to exploit the advantages of chitosan (CS) as a nanocarrier for delivery of anti-cellulite drug, green tea extract (GTE), into subcutaneous adipose tissue. Primarily, analysis of herbal extract was conducted via newly developed and validated UPLC method. Ionic gelation method was adopted in the preparation of nanoparticles where the effect lecithin was investigated resulting in the formation of hybrid lipid-chitosan nanoparticles. Optimal formula showed a particle size of 292.6 ± 8.98 nm, polydispersity index of 0.253 ± 0.02, zeta potential of 41.03 ± 0.503 mV and an entrapment efficiency percent of 68.4 ± 1.88%. Successful interaction between CS, sodium tripolyphosphate (TPP) and lecithin was confirmed by Fourier-transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction. Morphological examination was done using transmission electron microscope and scanning electron microscope confirmed spherical uniform nature of GTE load CS-TPP nanoparticles. Ex vivo permeation study revealed permeability enhancing activity of the selected optimal formula due to higher GTE deposition in skin in comparison to GTE solution. Moreover in vivo study done on female albino Wistar rats carried out for 21 days proved successful potential anti-cellulite activity upon its application on rats' skin. Histological examination showed significant reduction of adipocyte perimeter and area and fat layer thickness. Results of the current study demonstrated that the developed GTE-loaded CS-TPP nanoparticle comprised of chitosan and lecithin showed permeability enhancing activity along with the proven lipolytic effect of green tea represent a promising delivery system for anti-cellulite activity.


Subject(s)
Adipose Tissue/drug effects , Chitosan/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Tea , Animals , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Female , Lecithins/chemistry , Particle Size , Plant Extracts/pharmacokinetics , Polyphosphates/chemistry , Rats , Rats, Wistar , Skin Absorption/drug effects , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction
5.
Int J Pharm ; 608: 121114, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34543618

ABSTRACT

Lecithin-chitosan hybrid nanoparticles are emerging as a promising nanocarrier for topical drug delivery. They could achieve a maximized encapsulation of hydrophobic drugs due to the lipophilic nature of lecithin that comprises the core while enhancing retention in the upper skin layers using the positively charged polymeric coat of chitosan. The aim of this study is to incorporate tacrolimus; a hydrophobic anti-proliferative agent into lecithin chitosan hybrid nanoparticles by ethanolic injection technique using a suitable co-solvent to enhance encapsulation of the drug and allow a satisfactory release profile in the upper skin layers. Tacrolimus was successfully incorporated into the synthesized particles using olive oil and Tween 80 as co-solvents, with particle size (160.9 nm ± 15.9 and 118.7 nm ± 13.3, respectively) and EE (88.27% ± 4.3 and 66.72% ± 1.8, respectively). The in vitro drug release profile showed a faster release pattern for the Tween 80-containing particles over a 48-hour period (79.98% vs. 35.57%), hence, were selected for further investigation. The hybrid nanoparticles achieved significantly higher skin deposition than the marketed product (63.51% vs. 34.07%) through a 24-hour time interval, particularly, to the stratum corneum and epidermis skin layers. The in vivo results on IMQ-mouse models revealed superior anti-psoriatic efficacy of the synthesized nanoparticles in comparison to the marketed product in terms of visual observation of the skin condition, PASI score and histopathological examination of autopsy skin samples. Additionally, the in vivo drug deposition showed superior skin deposition of the nanoparticles compared to the marketed product (74.9% vs. 13.4%).


Subject(s)
Chitosan , Nanoparticles , Psoriasis , Animals , Chitosan/therapeutic use , Drug Carriers/therapeutic use , Lecithins , Mice , Particle Size , Psoriasis/drug therapy , Tacrolimus/therapeutic use
6.
Carbohydr Polym ; 268: 118238, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34127220

ABSTRACT

Tacrolimus is a natural macrolide that exhibits an anti-proliferative action by T-lymphocytic cells inhibition. Hence, it was tested as a potential topical treatment to improve and control psoriatic plaques. In this study, for the first time the lipophilic tacrolimus in chitosan nanoparticles was used to achieve the desired response and dermal retention of the drug using a modified ionic gelation technique. The hydrophobic drug, tacrolimus, was successfully encapsulated into the synthesized positively-charged particles (140.8 nm ± 50.0) and EE of (65.5% ± 1.3). Local skin deposition of the drug was significantly enhanced with 82.0% ± 0.6 of the drug retained in the skin compared to 34.0% ± 0.9 from tarolimus® ointment. An outstanding response to the prepared formula was the enhanced hair growth rate in the treated animals, which can be considered an excellent sign of the skin recovery from the induced psoriatic plaques after only three days of treatment.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Immunosuppressive Agents/therapeutic use , Nanoparticles/chemistry , Psoriasis/drug therapy , Tacrolimus/therapeutic use , Administration, Cutaneous , Animals , Chitosan/administration & dosage , Drug Carriers/administration & dosage , Drug Liberation , Ear/pathology , Imiquimod , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Particle Size , Psoriasis/chemically induced , Psoriasis/pathology , Rats, Sprague-Dawley , Skin/drug effects , Skin/pathology , Tacrolimus/administration & dosage , Tacrolimus/chemistry
7.
Polymers (Basel) ; 13(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668161

ABSTRACT

The objective of the present research is to propose chitosan as a nanocarrier for caffeine-a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box-Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box-Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.

8.
Drug Deliv ; 27(1): 662-680, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32393082

ABSTRACT

Psoriasis is a dermatological chronic skin condition with underlying autoimmune etiology. It deeply affects patients' quality of life. Therefore, it was an interesting target for researchers throughout the past years. Conventionally, the treatment options include anti-inflammatory agents, immune suppressants, biologic treatment, and phototherapy. Nanotechnology offers promising characteristics that allow for tailoring a drug carrier to achieve dermal targeting, improved efficacy and minimize undesirable effects. Being the safest route, the first line of treatment and a targeted approach, we solely discussed the use of the topical route, combined with advanced drug delivery systems for the management of psoriasis in this article. Advanced systems include polymeric, metallic, lipidic and hybrid nanocarriers incorporating different active agents. All formerly mentioned types of drug delivery systems were investigated through the past decades for the purpose of topical application on psoriatic plaques. Scientists' efforts are promising to reach an optimized formula with a convenient dosage form to improve efficacy, safety, and compliance for the treatment of psoriasis. Accordingly, it will offer a better quality of life for patients.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Drug Carriers/chemistry , Nanoparticles/chemistry , Psoriasis/drug therapy , Skin/drug effects , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/therapeutic use , Humans , Psoriasis/immunology , Skin/immunology , Skin Absorption/drug effects
9.
Int J Nanomedicine ; 15: 1335-1347, 2020.
Article in English | MEDLINE | ID: mdl-32184589

ABSTRACT

BACKGROUND: Atorvastatin calcium (AT) is an ocular anti-inflammatory with limited bioavailability when taken orally due to its low solubility in low pH and extensive first-pass effect. To overcome these problems, AT was entrapped in polymeric nanoparticles (NPs) to improve surface properties and sustained release, in addition to achieving site-specific action. METHODS: AT was entrapped in chitosan (CS)-coated polylactic-co-glycolic acid (PLGA) NPs to form AT-PLGA-CS-NPs (F1). F1 and free AT were embedded in thermosensitive Pluronic®127-hydroxypropyl methylcellulose (HPMC) to form thermosensitive gels (F2) and (F3) while F4 is AT suspension in water. F1 was assessed for size, surface charge, polydispersity index (PDI), and morphology. F2 and F3 were examined for gelation temperature, gel strength, pH, and viscosity. In vitro release of the four formulations was also investigated. The ocular irritancy and anti-inflammatory efficacy of formulations against prostaglandin E1-(PGE1) induced ocular inflammation in rabbits were investigated by counting the polymorphonuclear leukocytes (PMNs) and protein migrated in tears. RESULTS: Oval F1 of 80.0-190.0±21.6 nm exhibited a PDI of 0.331 and zeta potential of 17.4±5.62 mV with a positive surface charge. F2 and F3 gelation temperatures were 35.17±0.22°C and 36.93±0.31°C, viscosity 12,243±0.64 and 9759±0.22 cP, gel strength 15.56±0.6 and 12.45±0.1 s, and pHs of 7.4±0.02 and 7.4±0.1, respectively. In vitro release of F1, F2, F3, and F4 were 48.21±0.31, 26.48±0.5, 84.76±0.11, and 100% after 24 hrs, respectively. All formulations were non-irritant. F2 significantly inhibited lid closure up to 3 h, PMN counts and proteins in tear fluids up to 5 h compared to other formulations. CONCLUSION: AT-PLGA-CS-NP thermosensitive gels proved to be successful ocular anti-inflammatory drug delivery systems.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Atorvastatin/pharmacology , Chitosan/chemistry , Eye Diseases/drug therapy , Inflammation/drug therapy , Nanoparticles/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anticholesteremic Agents/administration & dosage , Anticholesteremic Agents/pharmacology , Atorvastatin/administration & dosage , Biocompatible Materials/chemistry , Biological Availability , Drug Carriers/chemistry , Drug Delivery Systems , Eye Diseases/chemically induced , Eye Diseases/pathology , Gels/chemistry , Inflammation/chemically induced , Inflammation/pathology , Nanoparticles/chemistry , Rabbits
10.
Sci Rep ; 10(1): 2459, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32034286

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Drug Deliv ; 27(1): 26-39, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31833443

ABSTRACT

The aim of this study is to prepare and evaluate the antibacterial and antibiofilm activity of ciprofloxacin (CIP) loaded PLGA nanoparticles (F2) and CIP-PLGA nanoparticles coated with chitosan (F3) versus ciprofloxacin solution (Fl) as a control on Enterococcus faecalis. F2 was prepared using double emulsion evaporation technique then coated with chitosan (F3). The prepared F2 and F3 were evaluated for size, surface charge, encapsulation efficiency, morphology and in vitro release. F1, F2, F3, and Chitosan (CS) were assessed in vitro using agar diffusion technique and biofilm inhibition assay. Finally, biofilm inhibition on teeth using Colony Forming Unit (CFU) was implemented with different concentrations of the three formulae. The results revealed that F2 is 202.9 nm with a negative charge -0.0254 mv, while F3 is 339.6 nm with a positive charge +28.5 mv. The encapsulation efficiency of F2, and F3 was 64% and 78% respectively. The amount released was 92.62% and 78.3% for F2 and F3, respectively, after 72 h, while F1 showed 100% released in the first hour. CS, F1, F2, and F3, showed antibacterial effect with inhibition zone of 12 mm, 22 mm, 20 mm, and 32 mm respectively. Biofilm inhibition of F1, F2, and F3 were 60%, 74%, and 91.8%, respectively. F3 colony count was less than F2, and F1 in all concentrations. It can be concluded that F3 had proven to exhibit potential antibacterial and antibiofilm activity in a controlled release pattern consequently, they can be used as an intra-canal medication.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Ciprofloxacin/pharmacology , Enterococcus faecalis/drug effects , Nanoparticles/chemistry , Anti-Bacterial Agents/administration & dosage , Chitosan/chemistry , Ciprofloxacin/administration & dosage , Dental Pulp Cavity , Dose-Response Relationship, Drug , Drug Carriers , Drug Liberation , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Stem Cells
12.
Sci Rep ; 8(1): 18056, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575794

ABSTRACT

Oromuco-adhesive films for buccal delivery of Propolis extract (PPE) entrapped in niosomes, were prepared to treat oral recurrent aphthous ulcer (RAU). PPE was investigated for antimicrobial compounds. Niosomes composed of span60 and cholesterol were evaluated for particles size, polydispersity index (PDI), zeta-potential, entrapment efficiency and in vitro release. The formed oromuco-adhesive films containing niosomal PPE were evaluated for swelling, mucoadhesion and elasticity. 24 patients suffering from RAU were divided equally into medicated and placebo groups and participated in this study to examine the onset of ulcer size reduction, complete healing and pain relief. Ultra-performance liquid chromatography-high resolution mass spectrometry revealed the presence of pinocembrin, pinobanksin, chrysin and galangin as antimicrobial flavonoids with total content of 158.7 ± 0.15 µg quercetin equivalents and phenolic content of 180.8 ± 0.11 µg gallic acid equivalents/mg. Multilamellar niosomes of 176-333 nm displayed entrapment efficiency of 91 ± 0.48%, PDI of 0.676 and zeta potential of -4.99. In vitro release after 8 h from niosomal dispersion and films were 64.05% and 29.09 ± 0.13% respectively. Clinical results revealed duration of film adherence from 2-4 h in the two groups. The onset of ulcer size reduction in medicated group was attained within second and third day, complete healing was achieved within first 10 days of treatment and pain relief lasted for more than 4-5 h, in contrast to the placebo group. This oromuco-adhesive films which offer controlled and targeting drug delivery can be proposed as a new therapeutic strategy in the treatment of oral recurrent aphthous ulcer.


Subject(s)
Drug Delivery Systems/methods , Propolis/administration & dosage , Stomatitis, Aphthous/drug therapy , Adhesives/administration & dosage , Administration, Oral , Adolescent , Adult , Animals , Apitherapy , Cell Membrane Permeability , Chickens , Female , Humans , Liposomes , Male , Membranes, Artificial , Models, Biological , Mouth Mucosa/metabolism , Propolis/pharmacokinetics , Recurrence , Young Adult
13.
Sci Rep ; 8(1): 13674, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209256

ABSTRACT

Thermoresponsive gels containing gold nanoparticles (AuNPs) were prepared using Pluronic®127 alone (F1) and with hydroxypropyl methylcellulose (F2) at ratios of 15% w/w and 15:1% w/w, respectively. AuNPs were evaluated for particle size, zeta-potential, polydispersity index (PDI), morphology and XRD pattern. AuNP-containing thermoresponsive gels were investigated for their gelation temperature, gel strength, bio-adhesive force, viscosity, drug content, in vitro release and ex-vivo permeation, in addition to in vitro antibacterial activity against bacteria found in burn infections, Staphylococcus aureus. In vivo burn healing and antibacterial activities were also investigated and compared with those of a commercial product using burn-induced infected wounds in mice. Spherical AuNPs sized 28.9-37.65 nm displayed a surface plasmon resonance band at 522 nm, a PDI of 0.461, and a zeta potential of 34.8 mV with a negative surface charge. F1 and F2 showed gelation temperatures of 37.2 °C and 32.3 °C, bio-adhesive forces of 2.45 ± 0.52 and 4.76 ± 0.84 dyne/cm2, viscosities of 10,165 ± 1.54 and 14,213 ± 2.31 cP, and gel strengths between 7.4 and 10.3 sec, respectively. The in vitro release values of F1 and F2 were 100% and 98.03% after 6 h, with permeation flux values of (J1) 0.2974 ± 2.85 and (J2) 0.2649 ± 1.43 (µg/cm2·h), respectively. The formulations showed antibacterial activity with the highest values for wound healing properties, as shown in vivo and by histopathological studies. This study demonstrates that a smart AuNPs thermoresponsive gel was successful as an antibacterial and wound healing transdermal drug delivery system.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Gels/pharmacology , Gold/pharmacology , Metal Nanoparticles/administration & dosage , Wound Healing/drug effects , Administration, Cutaneous , Animals , Drug Delivery Systems/methods , Mice , Particle Size , Silver/pharmacology , Staphylococcus aureus/drug effects
14.
Sci Rep ; 8(1): 8959, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895906

ABSTRACT

Drug repositioning is a revolution breakthrough of drug discovery that presents outstanding privilege with already safer agents by scanning the existing candidates as therapeutic switching or repurposing for marketed drugs. Sitagliptin, vildagliptin, saxagliptin & linagliptin showed antioxidant and neurorestorative effects in previous studies linked to DPP-4 inhibition. Literature showed that gliptins did not cross the blood brain barrier (BBB) while omarigliptin was the first gliptin that crossed it successfully in the present work. LC-MS/MS determination of once-weekly anti-diabetic DPP-4 inhibitors; omarigliptin & trelagliptin in plasma and brain tissue was employed after 2 h of oral administration to rats. The brain/plasma concentration ratio was used to deduce the penetration power through the BBB. Results showed that only omarigliptin crossed the BBB due to its low molecular weight & lipophilic properties suggesting its repositioning as antiparkinsonian agent. The results of BBB crossing will be of interest for researchers interested in Parkinson's disease. A novel intranasal formulation was developed using sodium lauryl sulphate surfactant to solubilize the lipophilic omarigliptin with penetration enhancing & antimicrobial properties. Intranasal administration showed enhanced brain/plasma ratio by 3.3 folds compared to the oral group accompanied with 2.6 folds increase in brain glucagon-like peptide-1 concentration compared to the control group.


Subject(s)
Antiparkinson Agents , Blood-Brain Barrier/metabolism , Heterocyclic Compounds, 2-Ring , Pyrans , Uracil/analogs & derivatives , Administration, Intranasal , Animals , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Pyrans/pharmacokinetics , Pyrans/pharmacology , Rats , Time Factors , Uracil/pharmacokinetics , Uracil/pharmacology
15.
Luminescence ; 33(4): 797-805, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29605965

ABSTRACT

A micelle enhanced spectrofluorimetric method was developed for determination of Omarigliptin (OMG) based on its native fluorescence behavior. The interaction of OMG with surfactants and macromolecules was studied. In aqueous solution, the relative fluorescence intensity (RFI) of OMG was enhanced by 24% in the presence of Tween 80 at pH 3.5. The optimal conditions for the micelle enhanced fluorescence were attained by Minitab® program using Plackett-Burman factorial design. Pareto chart, contour plots and surface plots were used to exclude the insignificant variables and optimize the significant factors. The spectrofluorimeter was operated under synchronous mode using ∆λ = 30 nm and recording the RFI of the intense narrow band at 267 nm for OMG in 0.5% w/v Tween 80 + 0.2 M acetate buffer (pH 3.5) system using water as diluent. Using synchronous scan mode offered many advantages including considerable reduction of spectral overlap and enhanced linearity of the calibrators. Validation parameters were satisfied over the concentration range 0.1-2 µg/ml. The developed method was the first analytical procedure for OMG assay in Marizev® tablets. Moreover, content uniformity testing and in vitro drug release of tablets were performed.


Subject(s)
Drug Design , Drug Liberation , Heterocyclic Compounds, 2-Ring/chemical synthesis , Pyrans/chemical synthesis , Calibration , Fluorescence , Heterocyclic Compounds, 2-Ring/chemistry , Micelles , Molecular Conformation , Pyrans/chemistry , Spectrometry, Fluorescence
17.
Sci Rep ; 7: 41503, 2017 01 30.
Article in English | MEDLINE | ID: mdl-28134262

ABSTRACT

Niosomes entrapping pregabalin (PG) were prepared using span 60 and cholesterol in different molar ratios by hydration method, the remaining PG from the hydrating solution was separated from vesicles by freeze centrifugation. Optimization of nano-based carrier of pregabalin (PG) was achieved. Quality by Design strategy was successfully employed to obtain PG-loaded niosomes with the desired properties. The optimal particle size, drug release and entrapment efficiency were attained by Minitab® program using design of experiment (DOE) that predicted the best parameters by investigating the combined effect of different factors simultaneously. Pareto chart was used in the screening step to exclude the insignificant variables while response surface methodology (RSM) was used in the optimization step to study the significant factors. Best formula was selected to prepare topical hydrogels loaded with niosomal PG using HPMC and Carbopol 934. It was verified, by means of mechanical and rheological tests, that addition of the vesicles to the gel matrix affected significantly gel network. In vitro release and ex vivo permeation experiments were carried out. Delivery of PG molecules followed a Higuchi, non Fickian diffusion. The present work will be of interest for pharmaceutical industry as a controlled transdermal alternative to the conventional oral route.


Subject(s)
Drug Carriers , Drug Delivery Systems , Hydrogels , Nanoconjugates , Pregabalin/administration & dosage , Administration, Topical , Calorimetry, Differential Scanning , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Liposomes/administration & dosage , Nanoconjugates/chemistry , Nanoconjugates/ultrastructure , Nanoparticles , Viscosity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...