Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572503

ABSTRACT

The plant surveillance system confers specificity to disease and immune states by activating distinct molecular pathways linked to cellular functionality. The extracellular matrix (ECM), a preformed passive barrier, is dynamically remodeled at sites of interaction with pathogenic microbes. Stem rot, caused by Macrophomina phaseolina, adversely affects fiber production in jute. However, how wall related susceptibility affects the ECM proteome and metabolome remains undetermined in bast fiber crops. Here, stem rot responsive quantitative temporal ECM proteome and metabolome were developed in jute upon M. phaseolina infection. Morpho-histological examination revealed that leaf shredding was accompanied by reactive oxygen species production in patho-stressed jute. Electron microscopy showed disease progression and ECM architecture remodeling due to necrosis in the later phase of fungal attack. Using isobaric tags for relative and absolute quantitative proteomics and liquid chromatography-tandem mass spectrometry, we identified 415 disease-responsive proteins involved in wall integrity, acidification, proteostasis, hydration, and redox homeostasis. The disease-related correlation network identified functional hubs centered on α-galactosidase, pectinesterase, and thaumatin. Gas chromatography-mass spectrometry analysis pointed toward enrichment of disease-responsive metabolites associated with the glutathione pathway, TCA cycle, and cutin, suberin, and wax metabolism. Data demonstrated that wall-degrading enzymes, structural carbohydrates, and calcium signaling govern rot responsive wall-susceptibility. Proteomics data were deposited in Pride (PXD046937; PXD046939).

3.
J Proteomics ; 260: 104560, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35314359

ABSTRACT

Fusarium oxysporum f. sp. cucumerinum (FOC) infects cucumber plants, causing significant yield losses. Chitosan is a natural biodegradable compound that has antifungal properties. To understand the inhibitory mechanism of chitosan against FOC, a comprehensive proteomic study was carried out for the identification of chitosan responsive proteins (CRPs) from the mycelia of chitosan-treated FOC. Two-dimensional gel electrophoresis (2-DE) coupled with LC-MS/MS analysis led to the identification of 62 differentially abundant CRPs. Functional classification of these CRPs revealed that most proteins were involved in metabolism and defense. Gene Ontology analysis revealed that the majority of the proteins were assigned in proteolysis and hydrolase activity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that among the biologically active pathways in chitosan-treated FOC mycelia, 'carbohydrate metabolism' was enriched for most of the proteins. This study gives a snapshot of the molecular basis of fungal inhibition by chitosan resulting in disease resistance in cucumber plants after inoculation with chitosan-treated FOC by explaining how chitosan restricted disease severity (i.e., down-regulating the plant cell wall degrading enzymes, FOC self-attack, hindering FOC structural and functional protein biosynthesis and DNA biosynthesis and affecting FOC transporter proteins). This study contributes to putting more weight on using the bioactive natural compound chitosan as an antifungal material instead of applying chemical fungicides in agriculture. SIGNIFICANCE: Chitosan has been used as one of the safe and effective alternatives to fungicides in controlling cucumber vascular wilt disease caused by Fusarium oxysporum f. sp. cucumerinum (FOC) that is responsible for severe production losses. Chitosan application showed a significant decrease in wilt disease severity compared to chitosan untreated FOC and showed an efficiency of 91.7% in reducing pathogenicity. A comprehensive proteomic investigation of chitosan-responsive proteins (CRPs) from the mycelia of chitosan-treated FOC was carried out in order to better understand the inhibitory mechanism of chitosan against FOC which led us to identify 62 differentially expressed CRPs. Our proteomic study revealed CRPs in FOC involved in a variety of functions, including disease inhibition in cucumber. This study depicts what happens inside the fungus following treatment with chitosan and how chitosan played the role of the maestro in influencing the synthesis of proteins responsible for the virulence of FOC and their respective pathways, rendering FOC unable to infect the cucumber plant and lose its pathogenic potential to cause wilt disease. The efficiency of chitosan in inhibiting certain proteins or specific pathways of FOC gives a golden opportunity in controlling vascular wilt, so we highly recommend applying chitosan in disease management under greenhouse conditions or in the open field.


Subject(s)
Chitosan , Cucumis sativus , Fungicides, Industrial , Fusarium , Antifungal Agents/pharmacology , Chitosan/pharmacology , Chromatography, Liquid , Cucumis sativus/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , Proteomics , Tandem Mass Spectrometry
4.
Chemosphere ; 283: 131102, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34146872

ABSTRACT

Arsenic (As) and cadmium (Cd) are unnecessary metal(loids) toxic at high concentration to plants and humans, hence lessening their rice grain accumulation is crucial for food security and human healthiness. Charred eggshell (EB), corncob biochar (CB), and eggshell-corncob biochar (ECB) were produced and amended to As and Cd co-polluted paddy soil at 1% and 2% application rates to alleviate the metal(loids) contents in rice grains using pot experiments. All the amendments increased paddy yields at 1%, while EB at 2% significantly reduced the yields compared to untreated control. The resulting yield loss in 2%EB was from the combined effects of its high CaCO3 supplementation, and the increment of rhizosphere soil pH which could insolubilize plant nutrients. The amendments were inefficient in decreasing rice grain As (AsGrain), but all the treatments significantly reduced the rice grain Cd (CdGrain) at both 1% (44.4-77.1%) and 2% (79.8-91.5%) application rates compared to that of control. Regression analysis for contribution weights of control factors revealed that rhizosphere soil Eh and pH were vital influential factors regulating the AsGrain, whereas porewater Cd was main factor controlling CdGrain accumulation. These investigations indicated that the Ca-enriched eggshell-corncob biochar even at high application rate (i.e., 2%ECB) could be a potential tactic for grain accumulation remediation of the cationic pollutant (i.e., Cd) from the paddy soil to rice grain scheme with concurrent increase in rice yields.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Calcium , Charcoal , Humans , Soil , Soil Pollutants/analysis
5.
Sci Total Environ ; 785: 147163, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33940407

ABSTRACT

Arsenic (As) and cadmium (Cd) are nonessential toxic metal(loids) that are carcinogenic to humans. Hence, reducing the bioavailability of these metal(loids) in soils and decreasing their accumulation in rice grains is essential for agroecology, food safety, and human health. Iron (Fe)-enriched corncob biochar (FCB), Fe-enriched charred eggshell (FEB), and Fe-enriched corncob-eggshell biochar (FCEB) were prepared for soil amelioration. The amendment materials were applied at 1% and 2% application rates to observe their alleviation effects on As and Cd loads in rice paddy tissues and yield improvements using pot trials. The FCEB treatment increased paddy yields compared to those of FCB (9-12%) and FEB (3-36%); this could be because it contains more plant essential nutrients than FCB and a lower calcite content than that of FEB. In addition, FCEB significantly reduced brown rice As (AsBR, 29-60%) and Cd (CdBR, 57-81%) contents compared to those of the untreated control (CON). At a 2% application rate, FCEB reduced the average mobility of As (56%) and Cd (62%) in rhizosphere porewater and enhanced root Fe-plaque formation (76%) compared to those of CON. Moreover, the enhanced Fe-plaque sequestered a substantial amount of As (171.4%) and Cd (90.8%) in the 2% FCEB amendment compared to that of CON. Pearson correlation coefficients and regression analysis indicated that two key mechanisms likely control AsBR and CdBR accumulations. First, rhizosphere soil pH and Eh controlled As and Cd availabilities in porewaters and their speciation in the soil. Second, greater Fe-plaque formation in paddy roots grown in the amended soils provided a barrier for plant uptake of the metal(loids). These observations demonstrate that soil amendment with Fe-enriched corncob-eggshell biochar (e.g., 2% FCEB) is a prospective approach for the remediation of metal accumulation from the soil to grain system while simultaneously increasing paddy yield.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Cadmium/analysis , Calcium , Charcoal , Humans , Iron/analysis , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...