Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pflugers Arch ; 475(8): 945-960, 2023 08.
Article in English | MEDLINE | ID: mdl-37261509

ABSTRACT

Proper food intake is important for maintaining good health in humans. Chocolate is known to exert anti-inflammatory effects; however, the mechanisms remain unclear. In this study, we aimed to investigate the effects of cocoa butter intake on gut immunity in rats and rabbits. Cocoa butter intake increased the lymph flow, cell density, and IL-1ß, IL-6 and IL-10 levels in mesenteric lymph. Clodronate, a macrophage depletion compound, significantly enhanced the release of all cytokines. The immunoreactivities of macrophage markers CD68 and F4/80 in the jejunal villi were significantly decreased with clodronate. Piceatannol, a selective cell surface ATP synthase inhibitor significantly reduced the cocoa butter intake-mediated releases of IL-1ß, IL-6 and IL-10. The immunoreactivities of cell surface ATP synthase were observed in rat jejunal villi. Shear stress stimulation on the myofibroblast cells isolated from rat jejunum released ATP and carbon dioxide depended with H+ release. In rabbit in vivo experiments, cocoa butter intake increased the concentrations of ATP and H+ in the portal vein. The in vitro experiments with isolated cells of rat jejunal lamina propria the pH of 3.0 and 5.0 in the medium released significantly IL-1ß and IL-6. ATP selectively released IL-10. These findings suggest that cocoa butter intake regulates the gut immunity through the release and transport of IL-1ß, IL-6, and IL-10 into mesenteric lymph vessels in a negative feedback system. In addition, the H+ and ATP released from cell surface ATP synthase in jejunal villi play key roles in the cocoa butter intake-mediated regulation of gut immunity.


Subject(s)
Chocolate , Dietary Fats , Gastrointestinal Tract , Proton-Translocating ATPases , Animals , Rats , Rabbits , Dietary Fats/administration & dosage , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Male , Rats, Sprague-Dawley , Lymph/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-10/metabolism , Clodronic Acid , Jejunum/metabolism , Shear Strength , Adenosine Triphosphate/metabolism , Carbon Dioxide/metabolism , Cells, Cultured , Proton-Translocating ATPases/antagonists & inhibitors , Proton-Translocating ATPases/metabolism
2.
Pflugers Arch ; 474(5): 541-551, 2022 05.
Article in English | MEDLINE | ID: mdl-35157133

ABSTRACT

The higher permeability of the venules in jejunal microcirculation to albumin contributes to the increased mesenteric lymph formation. Recently, we demonstrated that water intake induced serotonin release from enterochromaffin cells in rat jejunum, serotonin of which circulated through the portal vein into blood circulation and then increased the mesenteric lymph formation. The mode of action of serotonin remains unclear. Therefore, we aimed to clarify the mechanisms involved in the regulation of the jejunal lymph formation with permeant albumin in in vivo rat experiments. We investigated the effects of intravenous administration of serotonin or water intake on the jejunal-originated lymph volume and the concentration of albumin in the lymph in the presence or absence of L-NAME. The effects of intravenous administration of L-NAME, nicardipine, A23187, and ML-7 on the lymph formation with permeant albumin were also evaluated. Serotonin or water intake significantly increased the mesenteric lymph volume with permeant albumin in the jejunal microcirculation. The serotonin- and water intake-mediated responses were significantly reduced by the pretreatment with intravenous administration of L-NAME. Intravenous administration of L-NAME itself also decreased significantly the jejunal lymph formation. Administration of A23187 and ML-7 significantly reduced the jejunal lymph formation with permeant albumin. In contrast, administration of nicardipine significantly increased the lymph formation. In conclusion, portal venous blood flow- or serotonin-mediated NO release from venular endothelial cells plays physiologically key roles in the lymph formation in rat jejunum via the extrusion of calcium ions and inactivation of MLCK in endothelial cells.


Subject(s)
Jejunum , Serotonin , Albumins , Animals , Calcimycin/pharmacology , Endothelial Cells , NG-Nitroarginine Methyl Ester/pharmacology , Nicardipine/pharmacology , Rats , Serotonin/pharmacology
3.
Pflugers Arch ; 473(10): 1657-1666, 2021 10.
Article in English | MEDLINE | ID: mdl-34251510

ABSTRACT

We demonstrated pulmonary arteriolar blood flow-mediated CO2 gas excretion in rabbit lungs. The shear stress stimulation produced CO2 gas in cultured human endothelial cells of pulmonary arterioles via the activation of F1/Fo ATP synthase. To confirm the findings in human subjects undergoing the operation with heart-lung machines, we aimed to evaluate the effects of a stepwise switch, from a partial to a complete cardiopulmonary bypass, of the circulatory blood volume (BV, 100% = 2.4 × cardiac index), on the end-expiratory CO2 pressure (PetCO2), maximal flow velocity in the pulmonary artery (Max Vp), the inner diameter (ID) of pulmonary artery, pulmonary arterial CO2 pressure (P mix v CO2), pulmonary arterial O2 pressure (P mix v O2), hematocrit (Hct), pH, the concentration of HCO3-, and base excess (BE) in mixed venous blood in 9 patients with a mean age of 72.3 ± 3.4 years. In addition, the effects of the decrease in Hct infused with physiological saline solution (PSS) on PetCO2 were investigated in the human subjects. An approximately linear relationship between the PetCO2 and Max Vp was observed. The pumping out of 100% BV produced little or no change in the Hct, pH, P mix v CO2, and P mix v O2, respectively. The hemodilution produced by intravenous infusion of PSS caused a significant decrease in the Hct, but not in the PetCO2. In conclusion, another route of CO2 gas excretion, independent of red blood cells, may be involved in human lungs.


Subject(s)
Carbon Dioxide/metabolism , Erythrocytes/metabolism , Pulmonary Circulation , Aged , Cardiopulmonary Bypass , Female , Humans , Lung , Male
4.
Case Rep Anesthesiol ; 2021: 6635696, 2021.
Article in English | MEDLINE | ID: mdl-33936817

ABSTRACT

Intraoperative massive bleeding is associated with high rates of mortality and anesthetic management of massive bleeding is challenging because it is necessary to achieve volume resuscitation and electrolyte correction simultaneously during massive transfusion. We report a case of life-threatening bleeding of more than 80,000 mL during liver transplantation in which real-time QTc monitoring was useful for an extremely large amount of calcium administration for treatment of hypocalcemia. A 47-year-old female with a giant liver due to polycystic liver disease was scheduled to undergo liver transplantation. During surgery, life-threatening massive bleeding occurred. The maximum rate of blood loss was approximately 15,000 mL/hr and the total amount of estimated blood loss was 81,600 mL. It was extremely difficult to maintain blood pressure and a risk of cardiac arrest continued due to hypotension. In addition, even though administration of insulin and calcium was performed, electrolyte disturbances of hyperkalemia and hypocalcemia with prolongation of QTc interval occurred. At that time, we visually noticed that the QT interval was shortened in response to bolus calcium administration, and we used the change of real-time QTc interval as a supportive indicator for calcium correction. This monitoring allowed for us to administer calcium at an unusually high rate, by which progression of hypocalcemia was prevented. Levels of hemoglobin and coagulation factors were preserved both by restriction of crystalloid infusion and by a massive transfusion protocol. The patient was extubated without pulmonary edema or cardiac overload and was finally discharged without any sequelae. Intensive and cooperative management for massive transfusion and electrolyte correction using QTc monitoring was considered to be a key for successful management.

5.
Pflugers Arch ; 473(6): 921-936, 2021 06.
Article in English | MEDLINE | ID: mdl-33913004

ABSTRACT

The present study aims to investigate the roles of water intake in serotonin production and release in rat jejunum. We evaluated the changes in concentrations of serotonin in the portal vein and mesenteric lymph vessel induced by the intragastric administration of distilled water. The density of granules in enterochromaffin cells and the immunoreactivity of serotonin in the jejunal villi were investigated before and after water intake. The effects of intravenous administration of serotonin and/or ketanserin on mesenteric lymph flow and concentrations of albumin and IL-22 in the lymph were also addressed. Water intake increased serotonin concentration in the portal vein, but not in the mesenteric lymph vessel. The flux of serotonin through the portal vein was significantly larger than that through the mesenteric lymph vessel. Water intake decreased the density of granules in the enterochromaffin cells and increased the immunoreactivity of serotonin in the jejunal villi. The intravenous administration of serotonin increased significantly mesenteric lymph flow and the concentrations of albumin and IL-22; both were significantly reduced by the intravenous pretreatment with ketanserin. We showed that serotonin released from enterochromaffin cells by water intake was mainly transported through the portal vein. Additionally, serotonin in blood was found to increase mesenteric lymph formation with permeant albumin in the jejunal villi via the activation of 5-HT2 receptor.


Subject(s)
Drinking , Enterochromaffin Cells/metabolism , Jejunum/metabolism , Serotonin/metabolism , Albumins/metabolism , Animals , Cytoplasmic Granules/metabolism , Interleukins/blood , Jejunum/cytology , Jejunum/physiology , Male , Portal Vein/physiology , Rats , Rats, Sprague-Dawley , Serotonin/blood , Interleukin-22
6.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G54-G65, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33146549

ABSTRACT

We previously demonstrated that water intake increased mesenteric lymph flow and the total flux of IL-22 in rat jejunum. The drained water and the higher permeability of albumin in the jejunal microcirculation contributed to increase the lymph flow and IL-22 transport via the activation of great bulk flow in the jejunal villi. To address the effects of water intake-mediated great bulk flow-dependent mechanical force on jejunal physiological function and immunological regulation of innate lymphoid cells (ILC)-3, we examined the effects of shear stress stimulation on cultured rat myofibroblast cells. Next, we investigated the effects of water intake on podoplanin and IL-22 expressions in cultured human intestinal epithelial cells and rat in vivo jejunal preparations, respectively. Shear stress stimulation of the myofibroblast cells induced ATP release via an activation of cell surface F1/F0 ATP synthase. ATP produced podoplanin expression in the intestinal epithelial cells. Water intake accelerated immunohistochemical expressions of podoplanin and IL-22 in the interepithelial layers and lamina propria of the jejunum. ATP dose-dependently increased IL-22 mRNA expression in ILC-3, which are housed in the lamina propria. Water intake also increased immunohistochemical and mRNA expressions of ecto-nucleoside triphosphate diphosphohydrolases 2 and 5 in jejunal villi. In conclusion, water intake-mediated shear stress stimulation-dependent ATP release from myofibroblast cells maintains higher tissue colloid osmotic pressure in the jejunal microcirculation through podoplanin upregulation in the interepithelial layers. ATP induces IL-22 mRNA expression in ILC-3 in jejunal villi, which may contribute to regulation of mucosal immunity in small intestine.NEW & NOTEWORTHY We investigated effects of shear stress stimulation on cultured myofibroblast cells and water intake on podoplanin and IL-22 expressions in rat jejunal villi. The stimulation induced ATP release from the cells. Water intake accelerated podoplanin and IL-22 expression levels. ATP increased IL-22 mRNA expression in innate lymphoid cells (ILC)-3. Hence, water intake maintains higher osmotic pressure in the jejunal villi through ATP release and podoplanin upregulation. Water intake may regulate the mucosal immunity.


Subject(s)
Adenosine Triphosphate/metabolism , Drinking , Immunity, Innate/immunology , Membrane Glycoproteins/metabolism , Myofibroblasts/immunology , Adenosine Triphosphate/immunology , Drinking/immunology , Humans , Immunity, Mucosal/physiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Myofibroblasts/metabolism , Transcription Factors/immunology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...