Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821585

ABSTRACT

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Administration, Oral , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors
2.
Am J Surg Pathol ; 48(6): 652-661, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38584451

ABSTRACT

Very well-differentiated adenocarcinoma of intestinal type is a distinct subtype of gastric cancer characterized by anastomosing glands with a hand-in-hand pattern and low-grade cytologic atypia resembling intestinal metaplasia. This is a slow-growing neoplasm with an indolent clinical course; however, a subset demonstrates transformation into adenocarcinoma with higher-grade histology, typically diffuse-type carcinoma, and behaves aggressively. This study aimed to better characterize the genomic and pathologic features, with a focus on factors associated with diffuse-type transformation. A total of 58 cases with (n=31) and without (n=27) diffuse-type transformation were analyzed for molecular and pathologic features. First, comprehensive deep DNA sequencing was conducted in 18 cases (discovery cohort), followed by a digital droplet polymerase chain reaction of hot spot RHOA mutations in 40 cases (validation cohort). In total, RHOA mutations were the most common alteration (34%), followed by loss of ARID1A (12%), p53 alterations (10%), and CLDN18 :: ARHGAP26/6 fusions (3.4%). FGFR2 amplification was identified in an advanced case with a p53 alteration. Altered p53 expression was recognized only in higher-grade components and was significantly associated with advanced disease ( P =0.0015) and diffuse-type transformation ( P =0.026). A mixed mucin phenotype was also strongly correlated with advanced disease ( P <0.001) and diffuse-type transformation ( P <0.001). Decreased E-cadherin expression was frequently observed (74%) in poorly cohesive components. This study demonstrated that a subset of RHOA -mutant diffuse-type gastric cancers develops through the transformation of very well-differentiated adenocarcinoma of intestinal type. Our observations suggest a mixed mucin phenotype as a risk factor and alterations in p53 and E-cadherin as drivers of diffuse-type transformation.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Cell Transformation, Neoplastic , Mutation , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/chemistry , Male , Female , Middle Aged , Aged , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , rhoA GTP-Binding Protein/genetics , Cell Differentiation , Adult , Phenotype , Aged, 80 and over , Tumor Suppressor Protein p53/genetics , Genetic Predisposition to Disease , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing
3.
Cancer Sci ; 115(6): 1763-1777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527308

ABSTRACT

Overcoming resistance to immune checkpoint inhibitors is an important issue in patients with non-small-cell lung cancer (NSCLC). Transcriptome analysis shows that adenocarcinoma can be divided into three molecular subtypes: terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI), and squamous cell carcinoma (LUSQ) into four. However, the immunological characteristics of these subtypes are not fully understood. In this study, we investigated the immune landscape of NSCLC tissues in molecular subtypes using a multi-omics dataset, including tumor-infiltrating leukocytes (TILs) analyzed using flow cytometry, RNA sequences, whole exome sequences, metabolomic analysis, and clinicopathologic findings. In the PI subtype, the number of TILs increased and the immune response in the tumor microenvironment (TME) was activated, as indicated by high levels of tertiary lymphoid structures, and high cytotoxic marker levels. Patient prognosis was worse in the PP subtype than in other adenocarcinoma subtypes. Glucose transporter 1 (GLUT1) expression levels were upregulated and lactate accumulated in the TME of the PP subtype. This could lead to the formation of an immunosuppressive TME, including the inactivation of antigen-presenting cells. The TRU subtype had low biological malignancy and "cold" tumor-immune phenotypes. Squamous cell carcinoma (LUSQ) did not show distinct immunological characteristics in its respective subtypes. Elucidation of the immune characteristics of molecular subtypes could lead to the development of personalized immune therapy for lung cancer. Immune checkpoint inhibitors could be an effective treatment for the PI subtype. Glycolysis is a potential target for converting an immunosuppressive TME into an antitumorigenic TME in the PP subtype.


Subject(s)
Adenocarcinoma of Lung , Glucose Transporter Type 1 , Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Prognosis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Male , Female , Aged , Gene Expression Regulation, Neoplastic , Middle Aged , Gene Expression Profiling
5.
Nat Commun ; 14(1): 8383, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104198

ABSTRACT

Renal cell carcinoma (RCC) comprises several histological types characterised by different genomic and epigenomic aberrations; however, the molecular pathogenesis of each type still requires further exploration. We perform whole-genome sequencing of 128 Japanese RCC cases of different histology to elucidate the significant somatic alterations and mutagenesis processes. We also perform transcriptomic and epigenomic sequencing to identify distinguishing features, including assay for transposase-accessible chromatin sequencing (ATAC-seq) and methyl sequencing. Genomic analysis reveals that the mutational signature differs among the histological types, suggesting that different carcinogenic factors drive each histology. From the ATAC-seq results, master transcription factors are identified for each histology. Furthermore, clear cell RCC is classified into three epi-subtypes, one of which expresses highly immune checkpoint molecules with frequent loss of chromosome 14q. These genomic and epigenomic features may lead to the development of effective therapeutic strategies for RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Epigenomics , Japan , Genomics/methods , Chromatin , Kidney Neoplasms/pathology
6.
Nat Commun ; 14(1): 6514, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845228

ABSTRACT

Chronic inflammation promotes development and progression of colorectal cancer (CRC). To comprehensively understand the molecular mechanisms underlying the development and progression of inflamed CRC, we perform in vivo screening and identify 142 genes that are frequently mutated in inflammation-associated colon tumors. These genes include senescence and TGFß-activin signaling genes. We find that TNFα can induce stemness and activate senescence signaling by enhancing cell plasticity in colonic epithelial cells, which could act as a selective pressure to mutate senescence-related genes in inflammation-associated colonic tumors. Furthermore, we show the efficacy of the Cdk4/6 inhibitor in vivo for inflammation-associated colonic tumors. Finally, we functionally validate that Arhgap5 and Mecom are tumor suppressor genes, providing possible therapeutic targets for CRC. Thus, we demonstrate the importance of the inactivation of senescence pathways in CRC development and progression in an inflammatory microenvironment, which can help progress toward precision medicine.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Colorectal Neoplasms/genetics , Colonic Neoplasms/genetics , Mutagenesis , Inflammation/genetics , Signal Transduction , Tumor Microenvironment
7.
Nucleic Acids Res ; 51(14): e74, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37336583

ABSTRACT

We present our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. The current version of nanomonsv includes two detection modules, Canonical SV module, and Single breakend SV module. Using tumor/control paired long-read sequencing data from three cancer and their matched lymphoblastoid lines, we demonstrate that Canonical SV module can identify somatic SVs that can be captured by short-read technologies with higher precision and recall than existing methods. In addition, we have developed a workflow to classify mobile element insertions while elucidating their in-depth properties, such as 5' truncations, internal inversions, as well as source sites for 3' transductions. Furthermore, Single breakend SV module enables the detection of complex SVs that can only be identified by long-reads, such as SVs involving highly-repetitive centromeric sequences, and LINE1- and virus-mediated rearrangements. In summary, our approaches applied to cancer long-read sequencing data can reveal various features of somatic SVs and will lead to a better understanding of mutational processes and functional consequences of somatic SVs.


Subject(s)
Genomic Structural Variation , Neoplasms , Software , Humans , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasms/genetics , Sequence Analysis, DNA/methods
8.
Cancer Res Commun ; 3(6): 1026-1040, 2023 06.
Article in English | MEDLINE | ID: mdl-37377611

ABSTRACT

Resistance to immune checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold, myeloid cell-dominant, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T-cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy-number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC. Significance: The precise TIL profiling classified NSCLC into novel three immune subtypes that correlates with patient outcome, identifying subtype-specific molecular pathways and genomic alterations that should play important roles in constructing subtype-specific immune tumor microenvironments. These classifications of NSCLC based on TIL status are useful for developing personalized immune therapies for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Protein-Tyrosine Kinases/metabolism , Lymphocytes, Tumor-Infiltrating , Proto-Oncogene Proteins/metabolism , Signal Transduction/genetics , Tumor Microenvironment/genetics
9.
Nat Commun ; 14(1): 3688, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349325

ABSTRACT

Structural variants (SVs) are responsible for driver events in gastric cancer (GC); however, their patterns and processes remain poorly understood. Here, we examine 170 GC whole genomes to unravel the oncogenic structural aberration landscape in GC genomes and identify six rearrangement signatures (RSs). Non-random combinations of RSs elucidate distinctive GC subtypes comprising one or a few dominant RS that are associated with specific driver events (BRCA1/2 defects, mismatch repair deficiency, and TP53 mutation) and epidemiological backgrounds. Twenty-seven SV hotspots are identified as GC driver candidates. SV hotspots frequently constitute complexly clustered SVs involved in driver gene amplification, such as ERBB2, CCNE1, and FGFR2. Further deconstruction of the locally clustered SVs uncovers amplicon-generating profiles characterized by super-large SVs and intensive segmental amplifications, contributing to the extensive amplification of GC oncogenes. Comprehensive analyses using adjusted SV allele frequencies indicate the significant involvement of extra-chromosomal DNA in processes linked to specific RSs.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , BRCA1 Protein , BRCA2 Protein
10.
Nat Genet ; 55(4): 581-594, 2023 04.
Article in English | MEDLINE | ID: mdl-36914835

ABSTRACT

Gastric cancer is among the most common malignancies worldwide, characterized by geographical, epidemiological and histological heterogeneity. Here, we report an extensive, multiancestral landscape of driver events in gastric cancer, involving 1,335 cases. Seventy-seven significantly mutated genes (SMGs) were identified, including ARHGAP5 and TRIM49C. We also identified subtype-specific drivers, including PIGR and SOX9, which were enriched in the diffuse subtype of the disease. SMGs also varied according to Epstein-Barr virus infection status and ancestry. Non-protein-truncating CDH1 mutations, which are characterized by in-frame splicing alterations, targeted localized extracellular domains and uniquely occurred in sporadic diffuse-type cases. In patients with gastric cancer with East Asian ancestry, our data suggested a link between alcohol consumption or metabolism and the development of RHOA mutations. Moreover, mutations with potential roles in immune evasion were identified. Overall, these data provide comprehensive insights into the molecular landscape of gastric cancer across various subtypes and ancestries.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Transcriptome , Herpesvirus 4, Human/genetics , Genomics
11.
Cancers (Basel) ; 14(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36428615

ABSTRACT

We evaluated the efficacy and safety of bevacizumab beyond progression (BBP) in Japanese patients with newly diagnosed glioblastoma and explored predictors of response to bevacizumab. This phase II study evaluated a protocol-defined primary therapy by radiotherapy with concurrent and adjuvant temozolomide plus bevacizumab, followed by bevacizumab monotherapy, and secondary therapy (BBP: bevacizumab upon progression). Ninety patients received the protocol-defined primary therapy (BBP group, n = 25). Median overall survival (mOS) and median progression-free survival (mPFS) were 25.0 and 14.9 months, respectively. In the BBP group, in which O6-methylguanine-DNA methyltransferase (MGMT)-unmethylated tumors predominated, mOS and mPFS were 5.8 and 1.9 months from BBP initiation and 16.8 and 11.4 months from the initial diagnosis, respectively. The primary endpoint, the 2-year survival rate of the BBP group, was 27.0% and was unmet. No unexpected adverse events occurred. Expression profiling using RNA sequencing identified that Cluster 2, which was enriched with the genes involved in macrophage or microglia activation, was associated with longer OS and PFS independent of the MGMT methylation status. Cluster 2 was identified as a significantly favorable independent predictor for PFS, along with younger age and methylated MGMT. The novel expression classifier may predict the prognosis of glioblastoma patients treated with bevacizumab.

12.
Biol Methods Protoc ; 7(1): bpac014, 2022.
Article in English | MEDLINE | ID: mdl-35937639

ABSTRACT

With the advent of new molecular diagnostic techniques, retrieving DNA from the formalin-fixed paraffin-embedded (FFPE) tissues has become an essential yet challenging step for efficient downstream processes. Owing to low quality and quantity of DNA retrieved from the FFPE sections, the process is often impractical and needs significant improvements. Here, we established an efficient method for the purification of DNA from FFPE specimens by optimizing incubation temperature, incubation time, and the concentration of a formalin scavenger tris(hydroxymethyl)aminomethane (Tris) for reverse-crosslinking. The optimized method, named "Highly concentrated Tris-mediated DNA extraction" (HiTE), yielded three times the DNA yield per tissue slice compared with a representative DNA extraction kit. Moreover, the use of HiTE-extracted DNA increased the yield of the sequencing library three times and accordingly yielded a log higher and more reproducible sequencing library compared with that obtained using the commonly used commercial kit. The sequencing library prepared from HiTE-extracted FFPE-DNA had longer inserts and produced reads that evenly covered the reference genome. Successful application of HiTE-extracted FFPE-DNA for whole-genome and targeted gene panel sequencing indicates its practical usability.

13.
Carcinogenesis ; 43(7): 613-623, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35561328

ABSTRACT

The transcription factor Nrf2 plays a crucial role in the anti-oxidative stress response, protection of DNA from injury and DNA repair mechanisms. Nrf2 activity reduces cancer initiation, but how Nrf2 affects whole-genome alterations upon carcinogenic stimulus remains unexplored. Although recent genome-wide analysis using next-generation sequencing revealed landscapes of nucleotide mutations and copy number alterations in various human cancers, genomic changes in murine cancer models have not been thoroughly examined. We elucidated the relationship between Nrf2 expression levels and whole exon mutation patterns using an ethyl-carbamate (urethane)-induced lung carcinogenesis model employing Nrf2-deficient and Keap1-kd mice, the latter of which express high levels of Nrf2. Exome analysis demonstrated that single nucleotide and trinucleotide mutation patterns and the Kras mutational signature differed significantly and were dependent on the expression level of Nrf2. The Nrf2-deficient tumors exhibited fewer copy number alterations relative to the Nrf2-wt and Keap1-kd tumors. The observed trend in genomic alterations likely prevented the Nrf2-deficient tumors from progressing into malignancy. For the first time, we present whole-exome sequencing results for chemically-induced lung tumors in the Nrf2 gain or loss of function mouse models. Our results demonstrate that different Nrf2 expression levels lead to distinct gene mutation patterns that underly different oncogenic mechanisms in each tumor genotype.


Subject(s)
Lung Neoplasms , NF-E2-Related Factor 2 , Animals , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Disease Models, Animal , Genomics , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mutation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nucleotides/adverse effects , Nucleotides/metabolism , Urethane
14.
Brain Tumor Pathol ; 39(3): 171-178, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596897

ABSTRACT

BCORL1 encodes a transcriptional corepressor homolog to BCOR. BCORL1 rearrangements have been previously described as rare events, and among them, CREBBP-BCORL1 has been reported only in 2 cases of ossifying fibromyxoid tumors. Herein, we present the first case of diffusely infiltrating glioma with CREBBP-BCORL1 involving a 17-year-old female patient. Histologically, the tumor was composed of a diffusely infiltrative proliferation of small tumor cells with moderate cellularity showing prominent microcystic formation. DNA methylation analysis revealed that the current case and a previously reported anaplastic ependymoma with EP300-BCORL1 were clustered together in close proximity to but distinct from methylation class high-grade neuroepithelial tumor with BCOR alteration. RNA sequencing demonstrated high mRNA expression of not only BCORL1 but BCOR, and the latter was compatible with diffuse nuclear expression of BCOR detected by immunohistochemistry. Our findings suggest that central nervous system tumors with CREBBP/EP300-BCORL1 may exhibit diverse morphologies but form a distinct DNA methylation group and that BCORL1 fusion genes may lead to upregulation of both BCOR and BCORL1.


Subject(s)
Glioma , Repressor Proteins , Adolescent , CREB-Binding Protein/genetics , Female , Gene Fusion , Glioma/genetics , Humans , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors
15.
Mod Pathol ; 35(10): 1439-1448, 2022 10.
Article in English | MEDLINE | ID: mdl-35440765

ABSTRACT

CIC-rearranged sarcoma is characterized by round cell undifferentiated histology, frequent expression of ETV4 and WT1, and aggressive behavior. A clinical encounter of a case with CIC-DUX4 fusion and ERG/CD31 co-expression prompted us to systematically investigate ERG and CD31 expression status in 30 archival cases of CIC-rearranged sarcoma. Half (15) of them showed moderate or strong ERG expression in <5-100% of tumor cells, among which nine showed heterogeneous membranous CD31 reactivity, including four cases each showing diffuse or strong expression. None of them showed uniformly strong and diffuse ERG/CD31 co-expression; however, three cases were initially interpreted and treated as angiosarcoma without response. Except for smaller superficial tumor enrichment, the clinicopathological characteristics of these nine cases of ERG+/CD31+ CIC-rearranged sarcoma did not differ from those of remaining 21 cases. Five showed focal hemorrhagic clefts/cysts, mimicking vascular spaces. All tumors expressed ETV4 and/or nuclear WT1, and fusion to DUX4 was confirmed in seven cases. Four tumors examined by next-generation sequencing harbored no CIC missense mutations. Using DNA methylation profiling, one CD31+ CIC-rearranged sarcoma was clustered with CD31- CIC-rearranged sarcomas, but distant from angiosarcomas. When compared with epithelioid angiosarcomas lacking CIC rearrangements, ERG+/CD31+ CIC-rearranged sarcomas were distinguished by focal myxoid change and the entire lack of vasoformative architecture. The angiosarcomas were characterized by uniform strong expression of ERG and CD31, but none of them were found positive for ETV4 or nuclear WT1. Heterogeneous ERG/CD31 co-expression in a subset of CIC-rearranged sarcoma is a clinically relevant pitfall for angiosarcoma, as these two diseases are treated differently.


Subject(s)
Hemangiosarcoma , Sarcoma, Small Cell , Biomarkers, Tumor/genetics , Gene Fusion , Gene Rearrangement , Hemangiosarcoma/genetics , Humans , Oncogene Proteins, Fusion/genetics , Sarcoma, Small Cell/diagnosis , Transcriptional Regulator ERG/genetics
16.
Mod Pathol ; 35(2): 228-239, 2022 02.
Article in English | MEDLINE | ID: mdl-34504309

ABSTRACT

Synovial sarcoma is characterized by variable epithelial differentiation and specific SS18-SSX gene fusions. The diagnosis is primarily based on phenotype, but fusion gene detection is increasingly being considered indispensable, with SS18 break-apart fluorescence in situ hybridization (FISH) being favored in many laboratories. However, SS18 FISH assay produces negative or atypical results in a minority of cases, leaving uncertainties in diagnosis and management. Here, we analyzed this challenging subset of SS18 FISH-negative/atypical synovial sarcoma using RNA sequencing and monoclonal antibodies that recognize SS18-SSX and the SSX C-terminus. Among 99 synovial sarcoma cases that were previously subjected to SS18 break-apart FISH, eight cases were reported as negative and three cases were indeterminate, owing to atypical signal patterns. Three of these 11 tumors (two monophasic and one biphasic) harbored novel EWSR1-SSX1 fusions, were negative for SS18-SSX staining, and were positive for SSX C-terminus staining. One monophasic tumor harbored a novel MN1-SSX1 fusion, and showed negative SS18-SSX expression and positive SSX C-terminus staining. Another monophasic tumor carried an SS18L1-SSX1 fusion, and was weakly positive for SS18-SSX, while SMARCB1 expression was reduced. The presence of these novel and/or rare fusions was confirmed using RT-PCR and Sanger sequencing. EWSR1-SSX1 was further validated by EWSR1 FISH assay. The remaining six tumors (five monophasic and one biphasic) showed strong SS18-SSX expression, and RNA sequencing successfully performed in three cases identified canonical SS18-SSX2 fusions. Based on a DNA methylation-based unsupervised clustering, the tumors with EWSR1-SSX1 and SS18L1-SSX1 clustered with synovial sarcoma, while the MN1-SSX1-positive tumor was not co-clustered despite classic histology and immunoprofile. In summary, we discovered novel and rare SSX1 fusions to non-SS18 genes in synovial sarcoma. The expanded genetic landscape carries significant diagnostic implications and advances our understanding of the oncogenic mechanism.


Subject(s)
Sarcoma, Synovial , Humans , In Situ Hybridization, Fluorescence , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sarcoma, Synovial/pathology
17.
Cancer Discov ; 12(3): 692-711, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34880079

ABSTRACT

The neuroendocrine carcinoma of the gastrointestinal system (GIS-NEC) is a rare but highly malignant neoplasm. We analyzed 115 cases using whole-genome/exome sequencing, transcriptome sequencing, DNA methylation assays, and/or ATAC-seq and found GIS-NECs to be genetically distinct from neuroendocrine tumors (GIS-NET) in the same location. Clear genomic differences were also evident between pancreatic NECs (Panc-NEC) and nonpancreatic GIS-NECs (Nonpanc-NEC). Panc-NECs could be classified into two subgroups (i.e., "ductal-type" and "acinar-type") based on genomic features. Alterations in TP53 and RB1 proved common in GIS-NECs, and most Nonpanc-NECs with intact RB1 demonstrated mutually exclusive amplification of CCNE1 or MYC. Alterations of the Notch gene family were characteristic of Nonpanc-NECs. Transcription factors for neuroendocrine differentiation, especially the SOX2 gene, appeared overexpressed in most GIS-NECs due to hypermethylation of the promoter region. This first comprehensive study of genomic alterations in GIS-NECs uncovered several key biological processes underlying genesis of this very lethal form of cancer. SIGNIFICANCE: GIS-NECs are genetically distinct from GIS-NETs. GIS-NECs arising in different organs show similar histopathologic features and share some genomic features, but considerable differences exist between Panc-NECs and Nonpanc-NECs. In addition, Panc-NECs could be classified into two subgroups (i.e., "ductal-type" and "acinar-type") based on genomic and epigenomic features. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Carcinoma, Neuroendocrine/genetics , Exome , Humans , Infant, Newborn , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Pancreas/pathology , Exome Sequencing
18.
BMC Biol ; 19(1): 207, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548081

ABSTRACT

BACKGROUND: Intra-tumor heterogeneity (ITH) encompasses cellular differences in tumors and is related to clinical outcomes such as drug resistance. However, little is known about the dynamics of ITH, owing to the lack of time-series analysis at the single-cell level. Mouse models that recapitulate cancer development are useful for controlled serial time sampling. RESULTS: We performed single-cell exome and transcriptome sequencing of 200 cells to investigate how ITH is generated in a mouse colorectal cancer model. In the model, a single normal intestinal cell is grown into organoids that mimic the intestinal crypt structure. Upon RNAi-mediated downregulation of a tumor suppressor gene APC, the transduced organoids were serially transplanted into mice to allow exposure to in vivo microenvironments, which play relevant roles in cancer development. The ITH of the transcriptome increased after the transplantation, while that of the exome decreased. Mutations generated during organoid culture did not greatly change at the bulk-cell level upon the transplantation. The RNA ITH increase was due to the emergence of new transcriptional subpopulations. In contrast to the initial cells expressing mesenchymal-marker genes, new subpopulations repressed these genes after the transplantation. Analyses of colorectal cancer data from The Cancer Genome Atlas revealed a high proportion of metastatic cases in human subjects with expression patterns similar to the new cell subpopulations in mouse. These results suggest that the birth of transcriptional subpopulations may be a key for adaptation to drastic micro-environmental changes when cancer cells have sufficient genetic alterations at later tumor stages. CONCLUSIONS: This study revealed an evolutionary dynamics of single-cell RNA and DNA heterogeneity in tumor progression, giving insights into the mesenchymal-epithelial transformation of tumor cells at metastasis in colorectal cancer.


Subject(s)
Colorectal Neoplasms , Animals , Colorectal Neoplasms/genetics , DNA , Exome/genetics , Genetic Heterogeneity , Mice , RNA , Sequence Analysis, RNA , Tumor Microenvironment
19.
Genes Chromosomes Cancer ; 60(8): 546-558, 2021 08.
Article in English | MEDLINE | ID: mdl-33896058

ABSTRACT

SMARCB1 is mutated in most rhabdoid tumors (RTs) developing in the kidney (RTK) and various other organs. Focal deletions found in patients with 22q11.2 deletion syndrome show breakpoints within clusters of segmental duplications (SDs), and those in some RTs show breakpoints in the 22q11-q12 region. SDs are known to cause focal deletion mediated by non-allelic homologous recombination. The present study identified SMARCB1 alterations in all 30 RTKs, using SNP array CGH, MLPA, and sequence analyses. Twenty-eight tumors had a total of 51 breakpoints forming focal 22q deletion and/or uniparental disomy (22qUPD), and the other two had compound mutation with no breakpoints in 22q. Twenty-four (47.1%) of the 51 breakpoints were within SDs, and occurred in 16 (53.3%) of the 30 tumors. The association of breakpoints with SDs was found not only in focal deletion, but also in 22qUPD, indicating that SDs mediate the first and second hits (focal deletion) and the second hit (22qUPD) of SMARCB1 alteration. Of the 51 breakpoints, 14 were recurrent, and 10 of the 14 were within SDs, suggesting the presence of hotspots in the 22q11.2 region. One recurrent breakpoint outside SDs resided in SMARCB1, suggesting inactivation of the gene by out-of-frame fusion. The association between SDs and focal deletion has been reported in two other types of cancer. RTKs may be the third example of SD-associated tumors. Thus, the present study indicated that RTKs exploit genomic instability in the 22q11.1-11.2 SDs region, and 22qUPD caused by mitotic recombination may also be mediated by SDs.


Subject(s)
Chromosome Breakpoints , Chromosomes, Human, Pair 22/genetics , Kidney Neoplasms/genetics , Rhabdoid Tumor/genetics , Carcinogenesis/genetics , Child, Preschool , Chromosome Deletion , Chromosome Duplication , Female , Humans , Infant , Kidney Neoplasms/pathology , Male , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , Uniparental Disomy/genetics
20.
Brain Pathol ; 31(3): e12943, 2021 05.
Article in English | MEDLINE | ID: mdl-33576087

ABSTRACT

Recurrent fusion genes involving C11orf95, C11orf95-RELA, have been identified only in supratentorial ependymomas among primary CNS tumors. Here, we report hitherto histopathologically unclassifiable high-grade tumors, under the tentative label of "ependymoma-like tumors with mesenchymal differentiation (ELTMDs)," harboring C11orf95-NCOA1/2 or -RELA fusion. We examined the clinicopathological and molecular features in five cases of ELTMDs. Except for one adult case (50 years old), all cases were in children ranging from 1 to 2.5 years old. All patients presented with a mass lesion in the cerebral hemisphere. Histologically, all cases demonstrated a similar histology with a mixture of components. The major components were embryonal-appearing components forming well-delineated tumor cell nests composed of small uniform cells with high proliferative activity, and spindle-cell mesenchymal components with a low- to high-grade sarcoma-like appearance. The embryonal-appearing components exhibited minimal ependymal differentiation including a characteristic EMA positivity and tubular structures, but histologically did not fit with ependymoma because they lacked perivascular pseudorosettes, a histological hallmark of ependymoma, formed well-delineated nests, and had diffuse and strong staining for CAM5.2. Molecular analysis identified C11orf95-NCOA1, -NCOA2, and -RELA in two, one, and two cases, respectively. t-distributed stochastic neighbor embedding analysis of DNA methylation data from two cases with C11orf95-NCOA1 or -NCOA2 and a reference set of 380 CNS tumors revealed that these two cases were clustered together and were distinct from all subgroups of ependymomas. In conclusion, although ELTMDs exhibited morphological and genetic associations with supratentorial ependymoma with C11orf95-RELA, they cannot be regarded as ependymoma. Further analyses of more cases are needed to clarify their differences and similarities.


Subject(s)
Ependymoma/genetics , Ependymoma/pathology , Nuclear Receptor Coactivator 1/metabolism , Proteins/metabolism , Transcription Factor RelA/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Central Nervous System Neoplasms/genetics , Child, Preschool , DNA Methylation/genetics , Gene Fusion/genetics , Humans , Male , Middle Aged , Nuclear Receptor Coactivator 1/genetics , Proteins/genetics , Supratentorial Neoplasms/genetics , Supratentorial Neoplasms/pathology , Transcription Factor RelA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...