Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37597150

ABSTRACT

In this study, we report on the synthesis of ternary photocatalysts comprising TiO2/SnO2/g-C3N4 for the degradation of ciprofloxacin (CIP) in water. SnO2 nanoparticles were synthesized via the sol-gel method, while g-C3N4 was obtained through melamine calcination. Commercial TiO2 and SnO2 nanopowders were also used. The heterojunctions were synthesized via the wet impregnation method. The photocatalysts were characterized via various techniques, including XRD, TEM, STEM, FTIR, N2 adsorption, UV-Vis DR, and hole tests. Photocatalytic degradation tests of CIP were carried out under UV, visible, and solar radiation. The P25/npA/g-C3N4 (90/10) material exhibited the best performance, achieving CIP degradation of over 97%. The synthesized materials demonstrated excellent initial adsorption of CIP, around 30%, which facilitated subsequent degradation. Notably, the CIP photocatalytic degradation tests performed under solar radiation showed a synergistic effect between the base materials and carbon nitride in highly energetic environments. These results highlight the effectiveness of ternary photocatalysts TiO2/SnO2/g-C3N4 for CIP degradation, particularly under solar radiation.

2.
RSC Adv ; 10(55): 33059-33070, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-35515038

ABSTRACT

Nickel (5 wt%) supported on Nd-doped ceria was studied as catalysts in the DRM reaction at stoichiometric conditions in the range of 600-800 °C. Ce1-x Nd x O2-δ supports with different Nd contents (x = 0, 0.05, 0.1 and 0.2) were successfully synthesized. The role of oxygen vacancies by the incorporation of Nd3+ into the ceria lattice was investigated. These species were quantified by XRD and Raman spectroscopy, showing a linear dependence as a function of Nd content. Ni/Nd-ceria catalysts were prepared by wet impregnation. Although formation of oxygen vacancies, as well as microstructural features of the support (smaller crystallite sizes, higher surface area, and developed mesoporous structure) were improved as a function of the Nd content, no significant differences were observed in the catalytic properties of Ni/Nd-ceria in the DRM reaction. Despite this, compared to undoped ceria, all the Nd-doped CeO2 catalysts present an enhanced activity and stability, and the best catalytic performance was observed in the Ni/Ce0.95Nd0.05O2-δ sample. Quantification of carbon residues in spent catalysts showed, as expected, lower amounts in the Ni/Nd-ceria samples; nevertheless, among them, the catalyst with the higher amount of oxygen vacancies, is the one with the higher carbon residues. Incorporation of Nd in ceria changes the acid/base properties, diminishing the gasification capacity of the carbonaceous species. These results emphasize that the activity and stability in the Ni/Nd-ceria catalysts for the DRM reaction depend on two key factors, the redox and the acid/base properties of the CeO2 supports, offering insights about the necessary and adequate balance between these properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...