Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 15(4): e1006816, 2019 04.
Article in English | MEDLINE | ID: mdl-31002660

ABSTRACT

Tuning curves characterizing the response selectivities of biological neurons can exhibit large degrees of irregularity and diversity across neurons. Theoretical network models that feature heterogeneous cell populations or partially random connectivity also give rise to diverse tuning curves. Empirical tuning curve distributions can thus be utilized to make model-based inferences about the statistics of single-cell parameters and network connectivity. However, a general framework for such an inference or fitting procedure is lacking. We address this problem by proposing to view mechanistic network models as implicit generative models whose parameters can be optimized to fit the distribution of experimentally measured tuning curves. A major obstacle for fitting such models is that their likelihood function is not explicitly available or is highly intractable. Recent advances in machine learning provide ways for fitting implicit generative models without the need to evaluate the likelihood and its gradient. Generative Adversarial Networks (GANs) provide one such framework which has been successful in traditional machine learning tasks. We apply this approach in two separate experiments, showing how GANs can be used to fit commonly used mechanistic circuit models in theoretical neuroscience to datasets of tuning curves. This fitting procedure avoids the computationally expensive step of inferring latent variables, such as the biophysical parameters of, or synaptic connections between, particular recorded cells. Instead, it directly learns generalizable model parameters characterizing the network's statistical structure such as the statistics of strength and spatial range of connections between different cell types. Another strength of this approach is that it fits the joint high-dimensional distribution of tuning curves, instead of matching a few summary statistics picked a priori by the user, resulting in a more accurate inference of circuit properties. More generally, this framework opens the door to direct model-based inference of circuit structure from data beyond single-cell tuning curves, such as simultaneous population recordings.


Subject(s)
Models, Neurological , Models, Statistical , Nerve Net/physiology , Neurons/physiology , Algorithms , Animals , Computational Biology/methods , Databases, Factual , Machine Learning , Neural Networks, Computer
2.
J Neurosci ; 36(37): 9618-32, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27629713

ABSTRACT

UNLABELLED: Absence seizures are characterized by brief interruptions of conscious experience accompanied by oscillations of activity synchronized across many brain areas. Although the dynamics of the thalamocortical circuits are traditionally thought to underlie absence seizures, converging experimental evidence supports the key involvement of the basal ganglia (BG). In this theoretical work, we argue that the BG are essential for the maintenance of absence seizures. To this end, we combine analytical calculations with numerical simulations to investigate a computational model of the BG-thalamo-cortical network. We demonstrate that abnormally strong striatal feedforward inhibition can promote synchronous oscillatory activity that persists in the network over several tens of seconds as observed during seizures. We show that these maintained oscillations result from an interplay between the negative feedback through the cortico-subthalamo-nigral pathway and the striatal feedforward inhibition. The negative feedback promotes epileptic oscillations whereas the striatal feedforward inhibition suppresses the positive feedback provided by the cortico-striato-nigral pathway. Our theory is consistent with experimental evidence regarding the influence of BG on seizures (e.g., with the fact that a pharmacological blockade of the subthalamo-nigral pathway suppresses seizures). It also accounts for the observed strong suppression of the striatal output during seizures. Our theory predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. In contrast with the thalamocortical theory, it also predicts that reducing the synaptic transmission along the cortico-subthalamo-nigral pathway while keeping constant the average firing rate of substantia nigra pars reticulata reduces the incidence of seizures. SIGNIFICANCE STATEMENT: Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations persisting tens of seconds. Thalamocortical circuits are traditionally thought to underlie absence seizures. However, recent experiments have highlighted the key role of the basal ganglia (BG). This work argues for a novel theory according to which the BG drive the oscillatory patterns of activity occurring during the seizures. It demonstrates that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network and relate this property to the observed strong suppression of the striatal output during seizures. The theory is compatible with virtually all known experimental results, and it predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures.


Subject(s)
Corpus Striatum/physiology , Epilepsy, Absence/pathology , Models, Neurological , Neural Pathways/physiology , Somatosensory Cortex/physiology , Action Potentials/physiology , Animals , Basal Ganglia/physiology , Computer Simulation , Electric Stimulation , Epilepsy, Absence/physiopathology , Humans , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...