Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 127(8): 1565-1574, 2022 11.
Article in English | MEDLINE | ID: mdl-35945243

ABSTRACT

BACKGROUND: It has been considered that activation of peripheral µ-opioid receptors (MORs) induces side effects of opioids. In this study, we investigated the possible improvement of the immune system in tumour-bearing mice by systemic administration of the peripheral MOR antagonist naldemedine. METHODS: The inhibitory effect of naldemedine on MOR-mediated signalling was tested by cAMP inhibition and ß-arrestin recruitment assays using cultured cells. We assessed possible changes in tumour progression and the number of splenic lymphocytes in tumour-bearing mice under the repeated oral administration of naldemedine. RESULTS: Treatment with naldemedine produced a dose-dependent inhibition of both the decrease in the cAMP level and the increase in ß-arrestin recruitment induced by the MOR agonists. Repeated treatment with naldemedine at a dose that reversed the morphine-induced inhibition of gastrointestinal transport, but not antinociception, significantly decreased tumour volume and prolonged survival in tumour-transplanted mice. Naldemedine administration significantly decreased the increased expression of immune checkpoint-related genes and recovered the decreased level of toll-like receptor 4 in splenic lymphocytes in tumour-bearing mice. CONCLUSIONS: The blockade of peripheral MOR may induce an anti-tumour effect through the recovery of T-cell exhaustion and promotion of the tumour-killing system.


Subject(s)
Neoplasms , Receptors, Opioid, mu , Analgesics, Opioid/adverse effects , Animals , Immune System/metabolism , Mice , Morphine Derivatives , Naltrexone/analogs & derivatives , Neoplasms/chemically induced , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Toll-Like Receptor 4/metabolism , beta-Arrestins/metabolism
2.
PLoS One ; 12(2): e0172115, 2017.
Article in English | MEDLINE | ID: mdl-28225782

ABSTRACT

BACKGROUND: The EGFR tyrosine kinase inhibitor gefitinib is used in therapy for non-small-cell lung cancer (NSCLC). However, its application is limited by resistance-accelerated disease progression, which is accompanied by the epithelial-to-mesenchymal transition (EMT). In the present study, we performed multiple expression analyses of microRNAs (miRNAs) and quantified the expression of several related EMT players in gefitinib-resistant NSCLC cells. METHODS AND RESULTS: To establish gefitinib-resistant NSCLC cells, gefitinib-sensitive HCC827 cells, which exhibit an in-frame deletion [E746-A750] in EGFR exon 19, were exposed to gefitinib for at least 1.5 months. Next, to profile "gefitinib-resistant HCC827 (HCC827GR)" cells, which have a secondary T790M mutation in EGFR exon 20, a miRNA array analysis was performed in HCC827 and HCC827GR cells. The greatest differences were seen in the levels of miR-155 and miR-200c, which essentially disappeared in HCC827GR cells. In addition to these reductions, the levels of smad2 and zeb1, which are both key players in EMT and targets for miR-155 and miR-200c, respectively, were dramatically increased in HCC827GR cells. In HCC827GR cells, the expression of epithelial-cadherin (E-cadherin) was greatly reduced with repressive histone modifications, whereas vimentin, which is expressed in mesenchymal cells, was dramatically increased with active histone modifications. In another gefitinib-resistant NSCLC cell line (H1975 cells), similar to the findings in HCC827GR cells, both miR-155 and miR-200c were absent, and the EMT was induced along with epigenetic modifications. Interestingly, the inhibition of both miR-155 and miR-200c in HCC827 cells without gefitinib induced significant increases in smad2 and zeb1 along with a dramatic decrease in E-cadherin and a slight increase in vimentin. Furthermore, although the inhibition of these miRNAs in HCC827 cells decreased gefitinib sensitivity, this dual-inhibition in HCC827 cells without gefitinib did not produce a secondary T790M mutation in EGFR exon 20. CONCLUSION AND IMPLICATIONS: These results suggest that chronic treatment of NSCLC cells with gefitinib changes the expression of miRNAs, including dramatic reductions in miR-155 and miR-200c along with an EGFR mutation. Furthermore, this depletion of miR-155 and miR-200c may be associated with the EMT along with histone modifications, and may contribute to the decrease in the sensitivity to gefitinib independent of a secondary EGFR mutation.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Epigenesis, Genetic/drug effects , Lung Neoplasms/genetics , MicroRNAs/genetics , Quinazolines/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/drug effects , Gefitinib , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MicroRNAs/metabolism
3.
Breast Cancer Res Treat ; 161(2): 269-278, 2017 01.
Article in English | MEDLINE | ID: mdl-27888420

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) has aggressive characteristics and fewer treatment options than other subtypes. The purpose of this study was to explore prognostic biomarkers for TNBC that can be easily detected from the blood samples. METHODS: MDA-MB-231 and MDA-MB-231BR, a brain metastatic variant of the human TNBC cell line MDA-MB-231, were used as less and more aggressive models of TNBC, respectively. The extent to which the candidate gene/protein identified by RNA sequencing correlated well with aggressiveness of TNBC and how much protein was detected from the blood of tumor-bearing mice were evaluated. RESULTS: Both the in vitro proliferation and in vivo tumor growth of MDA-MB-231BR were more rapid than those of MDA-MB-231. RNA sequencing identified ESM1 as a gene that was expressed significantly more in MDA-MB-231BR than in MDA-MB-231, and qRT-PCR confirmed a significantly higher expression of ESM1 in MDA-MB-231BR xenograft in vivo. Furthermore, Kaplan-Meier analysis of relapse-free survival demonstrated that TNBC patients with high ESM1 expression had clearly worse relapse-free survival than those with low ESM1 expression, which was consistent with our preclinical findings. Endocan, a protein of ESM1 gene product, was successfully detected in both conditioned medium from MDA-MB-231BR and plasma samples from mice bearing MDA-MB-231BR xenograft, which showed a significantly distinct pattern from less aggressive MDA-MB-231. Moreover, bisulfite sequence analysis revealed that overexpression of ESM1 in MDA-MB-231BR might be attributed to DNA demethylation in an upstream region of the ESM1 gene. CONCLUSION: This study indicates that endocan could be used as a blood-based prognostic biomarker in TNBC patients.


Subject(s)
Biomarkers, Tumor , Neoplasm Proteins/metabolism , Proteoglycans/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Animals , Cell Line, Tumor , CpG Islands , DNA Methylation , Disease Models, Animal , Extracellular Space/metabolism , Female , Gene Expression , Heterografts , Humans , Mice , Neoplasm Proteins/blood , Neoplasm Proteins/genetics , Prognosis , Proteoglycans/blood , Proteoglycans/genetics , Triple Negative Breast Neoplasms/genetics
4.
Toxicol Appl Pharmacol ; 278(2): 190-9, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24823295

ABSTRACT

Fatigue is the most common side effect of chemotherapy. However, the mechanisms of "muscle fatigue" induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue.


Subject(s)
Cisplatin/toxicity , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Animals , Body Weight/drug effects , Body Weight/physiology , Male , Mice , Mice, Inbred C57BL , Muscular Atrophy/pathology
5.
Dig Dis Sci ; 58(12): 3440-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23695873

ABSTRACT

BACKGROUND AND OBJECTIVE: Although 5-fluorouracil (5-FU) is a widely used as chemotherapy agent, severe mucositis develops in approximately 80% of patients. 5-FU-induced small intestinal mucositis can cause nausea and vomiting. The current study was designed to investigate peripheral alterations due to the 5-FU-induced mucositis of neuronal and non-neuronal 5-HT3 and NK1 receptor expression by immunohistochemical analysis. METHODS: 5-FU was administered by i.p. injection to C57BL/6 mice. After 4 days, segments of the jejunum were removed. The specimens were analyzed by immunohistochemistry, real-time PCR, and enzyme immunoassay. RESULTS: The numbers of 5-HT3 receptor immunopositive cells and nerve fibers in mucosa were increased by 5-FU treatment. The 5-HT3 receptor immunopositive cell bodies were found only in jejunal submucosa and myenteric plexus in the 5-FU-treated mice. The numbers of NK1 receptor cells in mucosa and immunopositive expression of NK1 receptors in deep muscular plexus were dramatically increased in 5-FU-treated mice. Real-time PCR demonstrated that 5-FU treatment significantly increased mRNA levels of 5-HT3A, 5-HT3B, and NK1 receptors. The amounts of 5-HT and substance P increased after 5-FU treatment. The 5-HT3 or NK1 receptor immunopositive cells colocalized with both 5-HT and substance P. Furthermore, 5-HT3 and NK1 receptors colocalized with CD11b. CONCLUSIONS: The 5-HT3 and NK1 immunopositive macrophages and mucosal mast cells in lamina propria release 5-HT and substance P, which in turn activate their corresponding receptors on mucosal cells in autocrine and paracrine manners. It is assumed to result in the release of 5-HT and substance P in mucosa.


Subject(s)
Fluorouracil/adverse effects , Jejunal Diseases/metabolism , Mucositis/metabolism , Receptors, Neurokinin-1/biosynthesis , Receptors, Serotonin, 5-HT3/biosynthesis , Animals , Autocrine Communication , Disease Models, Animal , Jejunal Diseases/chemically induced , Jejunal Diseases/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mast Cells/metabolism , Mast Cells/pathology , Mice , Mice, Inbred C57BL , Mucositis/chemically induced , Mucositis/pathology , Paracrine Communication , Receptors, Neurokinin-1/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Substance P/metabolism , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...