Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Reg Health Southeast Asia ; 24: 100352, 2024 May.
Article in English | MEDLINE | ID: mdl-38756151

ABSTRACT

Background: The prognosis of lung carcinoma has changed since the discovery of molecular targets and their specific drugs. Somatic Epidermal Growth Factor Receptor (EGFR) mutations have been reported in lung carcinoma, and these mutant proteins act as substrates for targeted therapies. However, in a resource-constrained country like India, panel-based next-generation sequencing cannot be made available to the population at large. Additional challenges such as adequacy of tissue in case of lung core biopsies and locating suitable tumour tissues as a result of innate intratumoral heterogeneity indicate the necessity of an AI-based end-to-end pipeline capable of automatically detecting and learning more effective lung nodule features from CT images and predicting the probability of the EGFR-mutant. This will help the oncologists and patients in resource-limited settings to achieve near-optimal care and appropriate therapy. Methods: The EGFR gene sequencing and CT imaging data of 2277 patients with lung carcinoma were included from three cohorts in India and a White population cohort collected from TCIA. Another cohort LIDC-IDRI was used to train the AIPS-Nodule (AIPS-N) model for automatic detection and characterisation of lung nodules. We explored the value of combining the results of the AIPS-N with the clinical factors in the AIPS-Mutation (AIPS-M) model for predicting EGFR genotype, and it was evaluated by area under the curve (AUC). Findings: AIPS-N achieved an average AP50 of 70.19% in detecting the location of nodules within the lung region of interest during validation and predicted the score of five lung nodule properties. The AIPS-M machine learning (ML) and deep learning (DL) models achieved AUCs ranging from 0.587 to 0.910. Interpretation: The AIPS suggests that CT imaging combined with a fully automated lung-nodule analysis AI system can predict EGFR genotype and identify patients with an EGFR mutation in a cost-effective and non-invasive manner. Funding: This work was supported by a grant provided by Conquer Cancer Foundation of ASCO [2021IIG-5555960128] and Pfizer Products India Pvt. Ltd.

2.
Methods Mol Biol ; 2673: 305-316, 2023.
Article in English | MEDLINE | ID: mdl-37258923

ABSTRACT

Vaccine development is a complex and long process. It involves several steps, including computational studies, experimental analyses, animal model system studies, and clinical trials. This process can be accelerated by using in silico antigen screening to identify potential vaccine candidates. In this chapter, we describe a deep learning-based technique which utilizes 18 biological and 9154 physicochemical properties of proteins for finding potential vaccine candidates. Using this technique, a new web-based system, named Vaxi-DL, was developed which helped in finding new vaccine candidates from bacteria, protozoa, viruses, and fungi. Vaxi-DL is available at: https://vac.kamalrawal.in/vaxidl/ .


Subject(s)
Artificial Intelligence , Vaccines , Animals , Proteins , Antigens , Vaccine Development
3.
Vaccines (Basel) ; 11(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36851145

ABSTRACT

Chagas disease (CD) is endemic in large parts of Central and South America, as well as in Texas and the southern regions of the United States. Successful parasites, such as the causative agent of CD, Trypanosoma cruzi have adapted to specific hosts during their phylogenesis. In this work, we have assembled an interactive network of the complex relations that occur between molecules within T. cruzi. An expert curation strategy was combined with a text-mining approach to screen 10,234 full-length research articles and over 200,000 abstracts relevant to T. cruzi. We obtained a scale-free network consisting of 1055 nodes and 874 edges, and composed of 838 proteins, 43 genes, 20 complexes, 9 RNAs, 36 simple molecules, 81 phenotypes, and 37 known pharmaceuticals. Further, we deployed an automated docking pipeline to conduct large-scale docking studies involving several thousand drugs and potential targets to identify network-based binding propensities. These experiments have revealed that the existing FDA-approved drugs benznidazole (Bz) and nifurtimox (Nf) show comparatively high binding energies to the T. cruzi network proteins (e.g., PIF1 helicase-like protein, trans-sialidase), when compared with control datasets consisting of proteins from other pathogens. We envisage this work to be of value to those interested in finding new vaccines for CD, as well as drugs against the T. cruzi parasite.

SELECTION OF CITATIONS
SEARCH DETAIL
...