Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chemphyschem ; 15(2): 283-92, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24402742

ABSTRACT

A variety of phosphated zeolite H-ZSM-5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse (27)Al, (29)Si, (31)P, (1)H-(31)P cross polarization (CP), (27)Al-(31)P CP, and (27)Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X-ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H-ZSM-5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre-steamed H-ZSM-5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H-ZSM-5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H-ZSM-5, containing AlPO4 , retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H-ZSM-5.

2.
Chemistry ; 19(26): 8533-42, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23649944

ABSTRACT

The catalytic, deactivation, and regeneration characteristics of large coffin-shaped H-ZSM-5 crystals were investigated during the methanol-to-hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas-phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin-shaped zeolite H-ZSM-5 crystals in a fixed-bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization-dependent UV-visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time-of-flight secondary-ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed-bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2 /inert gas mixtures at 550 °C. UV-visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H-ZSM-5 deactivated more rapidly at higher reaction temperature.

3.
Chemphyschem ; 14(3): 496-9, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23292881

ABSTRACT

Which side are you on? Scanning transmission X-ray microscopy is used for the first time to elucidate the coordination and distribution of aluminum in industrial-relevant zeolites at the single-particle level. Extended regions of a few hundred nanometers, rich in higher aluminum coordination environments, are heterogeneously embedded within the zeolite particle, before and after a steaming post-treatment.

5.
Phys Chem Chem Phys ; 14(19): 6967-73, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22278134

ABSTRACT

The Brønsted acid-catalyzed oligomerization of 4-fluorostyrene has been studied on a series of H-ZSM-5 zeolite powders, steamed under different conditions, with a combination of UV-Vis micro-spectroscopy and Scanning Transmission X-ray Microscopy (STXM). UV-Vis micro-spectroscopy and STXM have been used to monitor the relative formation of cyclic and linear dimeric carbocations as a function of the steaming post-treatment (i.e., parent vs. steaming at 600, 700 and 800 °C). It was found that the UV-Vis band intensity ratios of linear to cyclic dimeric species increase from 0.79 (parent H-ZSM-5) over 1.41 (H-ZSM-5 steamed at 600 °C) and 1.88 (H-ZSM-5 steamed at 700 °C) to 2.33 (H-ZSM-5 steamed at 800 °C). STXM confirms this trend in reaction product selectivity, as the relative intensities of the transitions attributed to the presence of the cyclic dimer in the carbon K-edge spectra decrease with increasing severity of the steaming post-treatment. Furthermore, STXM reveals spatial heterogeneities in reaction product formation within the H-ZSM-5 zeolite powders at the nanoscale. More specifically, a shrinking carbon core-shell distribution was detected within the zeolite aggregates, in which the relative amount of cyclic dimeric species is higher in the core relative to the shell of the zeolite aggregate and the relative amount of cyclic dimeric species in the zeolite core gradually decreases with increasing severity of the steaming post-treatment. These differences are rationalized in terms of spatial differences in Brønsted acidity within H-ZSM-5 zeolite powders as well as by changes in the formation process of linear and dimeric carbocations within H-ZSM-5 micro- and mesopores.

6.
Chemistry ; 17(49): 13773-81, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22052456

ABSTRACT

A combination of atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron-based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM-5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol-to-olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM-5. Interestingly, only residual surface mesoporosity was generated in the mildly steamed ZSM-5 zeolite, leading to rapid crystal coloration and coking upon catalytic testing and indicating an enhanced deactivation of the zeolites. In contrast, harsh steaming conditions generated 5-50 nm mesopores, extensively improving the accessibility of the zeolites. However, severe dealumination decreased the strength of the Brønsted acid sites, causing a depletion of the overall acidity, which resulted in a major drop in catalytic activity.


Subject(s)
Zeolites/chemistry , Hydrogen-Ion Concentration , Microscopy, Confocal , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Porosity , Spectrophotometry, Infrared
8.
Chemphyschem ; 11(5): 951-62, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20306509

ABSTRACT

The present status of in-situ scanning transmission X-ray microscopy (STXM) is reviewed, with an emphasis on the abilities of the STXM technique in comparison with electron microscopy. The experimental aspects and interpretation of X-ray absorption spectroscopy (XAS) are briefly introduced and the experimental boundary conditions that determine the potential applications for in-situ XAS and in-situ STXM studies are discussed. Nanoscale chemical imaging of catalysts under working conditions is outlined using cobalt and iron Fischer-Tropsch catalysts as showcases. In the discussion, we critically compare STXM-XAS and STEM-EELS (scanning transmission electron microscopy-electron energy loss spectroscopy) measurements and indicate some future directions of in-situ nanoscale imaging of catalytic solids and related nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...